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The BBC keeps a few hundred free programs on iPlayer 
No tracking, no ads (taxpayer funded) 
No account (until recently)  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The BBC keeps a few hundred free programs on iPlayer 
No tracking, no ads (taxpayer funded) 
No account (until recently)  

Still… they want to give recommendations & gather statistics
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For iPlayer, consider binary ratings (viewed/not viewed)
Build a co-views matrix C 
Cab = #views for the pair of programs (a,b)

Compute a Similarity Matrix

Identify K-Neighbors (KNN) based on Sim Matrix

Item-KNN based Recommendations

Predict favorite items for users based on their own ratings 
and those of “similar” users

{Sim}ab =
Cab

Ca ⋅ Cb
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. . .

Dr Who Sherlock Earth

Dr Who 1 - -
Sherlock 1 1 -
Earth 0 0 0

Dr Who Sherlock Earth

Dr Who 1 - -
Sherlock 1 1 -
Earth 1 1 1

Dr Who Sherlock Earth

Dr Who 1 - -
Sherlock 0 0 -
Earth 0 0 0

Dr Who Sherlock Earth
Dr Who 195 - -
Sherlock 155 180 -
Earth 80 99 123
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Privacy := learn aggregate counts, e.g., 155 users have watched  
Dr Who and Sherlock, but not who has watched what 



Private Data Aggregation (PDA)
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Private Data Aggregation (PDA)

Use additively homomorphic encryption 
EncPK(x)*EncPK(y) = EncPK(x+y)
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Private Data Aggregation (PDA)

Use additively homomorphic encryption 
EncPK(x)*EncPK(y) = EncPK(x+y)

Generate keys adding up to 0 
User U1, U2, … , UN —> k1 + k2 + … + kN = 0 
Encki(xi) = xi+ki mod 232 

Πi=1,..,N Enci(xi) = Σi=1,..,N (xi+ki) = Σi=1,..,N xi
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Using PDA for Item-KNN does not scale…  
For N users and M programs: O(N•M2) cryptographic operations 
and O(M2) ciphertexts
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Using PDA for Item-KNN does not scale…  
For N users and M programs: O(N•M2) cryptographic operations 
and O(M2) ciphertexts

Approximate statistics may be ok for better efficiency?

Use succinct data structures to compress 
data streams and aggregate on that

L. Melis, G. Danezis, E. De Cristofaro. Efficient Private Statistics with Succinct Sketches. NDSS’16. 
(Winner of the 5th Catalan Data Protection Authority’s Privacy by Design Award) �11



Count(-Min) Sketch
Estimate an item’s frequency in a stream  
Mapping a stream of values (of length T) to a matrix of size O(logT) 
Sum of two sketches = sketch of the union of the two data streams
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Prototype Implementation

Tally (server-side) as a Node.js web server 

Client-side in JavaScript, runs in the browser or as a mobile cross-
platform application (Apache Cordova) 

Deploying as easy as installing a Node.js package via NPM
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Succinct Data Structures+PDA  
also useful in other settings…
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HSDir statistics 
[long standing problem]

Succinct Data Structures+PDA  
also useful in other settings
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HSDir statistics 
[long standing problem]

Inferring population health statistics  
(e.g., influenza) from Google searches 

[Primault et al., WWW’19]

Succinct Data Structures+PDA  
also useful in other settings
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Differential Privacy (Weaker Notion)

Let X be the “data universe” 
Let D⊂X be the “dataset”

Definition: An Algorithm M is (ε,𝛿)-differentially private if for all 
pairs of neighboring datasets (D,D’), and for all outputs x: 

    Pr[M(D)=x] ≤ exp(ε) * Pr[M(D’) = x] + 𝛿

quantifies information  
leakage

allows for a small 
probability of failure
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Some Useful Properties

Theorem (Post-Processing):
  If M(D) is ε-private, for any function f, then f(M(D)) is ε-private

Theorem (Composition):
  If M1,…,Mk are ε-private, then M(D)=M(M1(D),…,Mk(D)) is (k*ε)-private

We can apply algorithms as we normally would; access the data 
using differentially private subroutines, and keep track of privacy 
budget (Modularity)
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Organizations need/want to publish their datasets without 
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Differential Privacy: Weak utility, “curse of dimensionality”(*)

(*) Brickell & Shmatikov, The cost of privacy: destruction of data-mining utility in anonymized  
data publishing. In KDD 2008.
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Motivation

Organizations need/want to publish their datasets without 
compromising users’ privacy

Differential Privacy: Weak utility, “curse of dimensionality”(*)
k-Anonymity: no real privacy
(*) Brickell & Shmatikov, The cost of privacy: destruction of data-mining utility in anonymized  
data publishing. In KDD 2008.

Data
Anonymizer

Raw Data Sanitized Data 
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How about generating  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How about generating  
synthetic dataset?

Gergely Acs, Luca Melis, Claude Castelluccia, Emiliano De Cristofaro. Differentially Private 
Mixture of Generative Neural Networks. In IEEE ICDM’17. (Extended version in IEEE TKDE) �23
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Model the data-generating distribution by training a generative 
model on the original data 
Publish the model along with its differentially private parameters 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Main Idea

Model the data-generating distribution by training a generative 
model on the original data 
Publish the model along with its differentially private parameters 

Anybody can generate a synthetic dataset resembling the original 
(training) data 
With strong (differential) privacy protection
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Synthetic Samples (MNIST)

Original samples RBM samples VAE w/o clustering VAE with clustering

20 SGD epochs (epsilon=1.74)
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Against Collaborative Learning. IEEE Symposium on Security & Privacy (S&P’19)
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Reasoning about “privacy” in ML

Most papers on privacy attacks in ML focus on inferring:
1. Inclusion of a data point in the training set 
   (aka “membership inference”)
2. What class representatives look like
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Membership Inference (cnt’d)

Given f(data), infer if x ∈ data (e.g., f is aggregation)
[Homer et al., Science’13] for genomic data
[Pyrgelis et al., NDSS’18] for mobility data

Membership inference is a very active research area, not 
only in machine learning… 
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Intuition

How about if we inferred properties of a subset of the 
training inputs…

    …but not of the whole class?

In a nutshell: given a gender classifier, infer race of 
people in Bob’s photos
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Collaborative Learning

Joint model
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Passive Property Inference Attack

Server

Adversary !"

!#

!$

.

. 

.

Save snapshots of joint 
model

Infer information 
based on gradients

Aggregated 
gradients

Aggregated 
gradients

Calculate the difference
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Active Property Inference Attack

Main Task 
(Gender)

Main Task
(Gender)

Inference Task
(Facial ID)

Gradients on 
Main Loss

Gradients on 
Joint Loss

Server

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

!(#, %; ') ) ∗ ! #, %; ' + , − . ∗ !(#, /; ')

Upload local 
updates

Download
joint model
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Dataset Type Main Task Inference Task

LFW Images Gender/Smile/Age 
Eyewear/Race/Hair

Race/Eyewear

FaceScrub Images Gender Identity
PIPA Images Age Gender
FourSquare Locations Gender Membership

Yelp-health Text Review Score Membership 
Doctor specialty

Yelp-author Text Review Score Author
CSI Text Sentiment Membership 

Region/Gender/Veracity
�37



Property Inference on LFW
Main Task Inference 

Task
Correlation AUC 

score
Gender Sunglasses -0.025 1.0

Smile Asian 0.047 0.93

Age Black -0.084 1.0

Race Sunglasses 0.026 1.0

Eyewear Asian -0.119 0.91

Hair Sunglasses -0.013 1.0

Two-Party Multi-Party
�38



Feature t-SNE projection
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pool1 pool2

pool3 fc
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Passive vs Active Attack on FaceScrub
Main Task: ▲/●= female/male  
Inference Task: Blue points with the property (identity)

Passive attack Active attack
�40
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Inferring when a property occurs

Main task: Age / Two-party 
Inference task: people in the image are 
of the same gender (PIPA)

Batches with the property appear
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Inferring when a property occurs

Main task: Age / Two-party 
Inference task: people in the image are 
of the same gender (PIPA)

Batches with the property appear

Main task: Gender / Multi-Party 
Inference task: author identification

Participant with ID 1 joins training
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Defenses?
Selective gradient sharing 
Dataset: Text reviews 
Main Task: Sentiment classifier 
Doesn’t really work…

Participant-level differential privacy 
Hide participant’s contributions 
Only 2 “hand-crafted” mechanisms in the literature 
Fail to converge for “few” participants

Property / % parameters 
shared

10% 50% 100% 

Top region 0.84 0.86 0.93

Gender 0.90 0.91 0.93

Veracity 0.94 0.99 0.99
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