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Privacy in ML is & & &
Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

Membership

This talk!
Inference

Model Inversion —> Fredrikson et al., Model inversion attacks that exploit confidence
information and basic countermeasures. ACM CCS’15.

Property Inference —> Melis et al., Exploiting Unintended Feature Leakage in Collaborative

Learning. IEEE S&P’19 3
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Membership inference is a very active research area,
not only in machine learning...

Given f(data), infer if x € data (e.g., f is aggregation)

[HSR*08, WLW*09] for genomic data
[Pyrgelis et al., NDSS’18] for mobility data

Well-understood problem, besides the more obvious leakage

Establish wrongdoing
Assess protection, e.g., from differentially private defenses
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Machine Learning as a Service

amazon

webservices

= Google

Cloud model

Prediction API Training API

l Predictions are leaky! A
=

8“ Illlll Shokri et al. Membership inference attacks
against machine learning models. S&P’17




Membership Inference/Discriminative

1.00
0.75
0.50
0.25
0.00

Cat Penguin  House Ocean

Prediction API




amazon

.||Ii

Google

ML Model

Prediction API

08
A 0.6
‘=l
Car House

\ 4






Discriminative

Model — cat | dog




Discriminative
Model — cat | dog

Generative
Model




Membership Inference in Generative Models?



Membership Inference in Generative Models?

&

Generative model

Training API

Generative API




Inference without predictions?

Use generative models!

Train GANs to learn the distribution and a prediction model at the
same time



Inference without predictions?

Use generative models!

Train GANs to learn the distribution and a prediction model at the
same time

Generator



White-Box Attack

- / 1) Predict 2) Sort scores  3) Take top scores
| Dbb(xl) = 0.30 \ / Dbb(xll = 0.99 \ 7]
Dbb(xZ) = 0.02 Dbb(xlz) = (0.98
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Black-Box Attack

1) Predict 2) Sort scores 3) Take top scores

/ Dpp(x1) = 0.30 \ / Dpp(xi,) = 0.99
Dbb(xZ) = 002 Dbb(xlz = O 98

Dypp(x3) = 0.79
bb (*3) Dpp(x;,) =095 | =

\Dbb(xm;l) = 0-64) \Dbb(xim.;;) = 0.01/



Datasets Models
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Black-Box Results

LFW, top ten classes CIFAR-10, random 10% subset
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In a nutshell...

Black-box 40% 37% 22%

Black-box with
aux knowledge

60% 58% 81%

Random guess 10% 10% 20%
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Defense? Differentially Private GAN?
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*Triastcyn et al. “Generating differentially private datasets using GANs.” arXiv 1803.03148






