

LOGAN: Membership Inference Attacks Against Generative Models

Jamie Hayes*, Luca Melis*, George Danezis, and Emiliano De Cristofaro

Privacy in ML is 6000

Privacy in ML is

Most papers on privacy in ML focus on inferring:

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

2. What class representatives look like

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

2. What class representatives look like

3. Properties of training data

Privacy in ML is

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

Membership Inference

2. What class representatives look like

3. Properties of training data

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

2. What class representatives look like

3. Properties of training data

Membership Inference

Model Inversion

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

2. What class representatives look like

3. Properties of training data

Membership Inference

Model Inversion

Property Inference

Privacy in ML is 66 66

Most papers on privacy in ML focus on inferring:

1. Inclusion of a data point in the training set

Membership Inference

This talk!

Model Inversion —> Fredrikson et al., Model inversion attacks that exploit confidence information and basic countermeasures. ACM CCS'15.

Property Inference —> Melis et al., Exploiting Unintended Feature Leakage in Collaborative Learning. IEEE S&P'19

3

Adversary wants to test whether data of a target victim has been used to train a model

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

E.g., main task is: predict whether a smoker gets cancer

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive E.g., main task is: predict whether a smoker gets cancer

Membership inference is a very active research area, not only in machine learning...

Membership inference is a very active research area, not only in machine learning...

Membership inference is a very active research area, not only in machine learning...

Given f(data), infer if $x \in data$ (e.g., f is aggregation)

Membership inference is a very active research area, not only in machine learning...

```
Given f(data), infer if x \in data (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data
```

Membership inference is a very active research area, not only in machine learning...

Given f(data), infer if $x \in data$ (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data

Well-understood problem, besides the more obvious leakage

Membership inference is a very active research area, not only in machine learning...

Given f(data), infer if $x \in data$ (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data

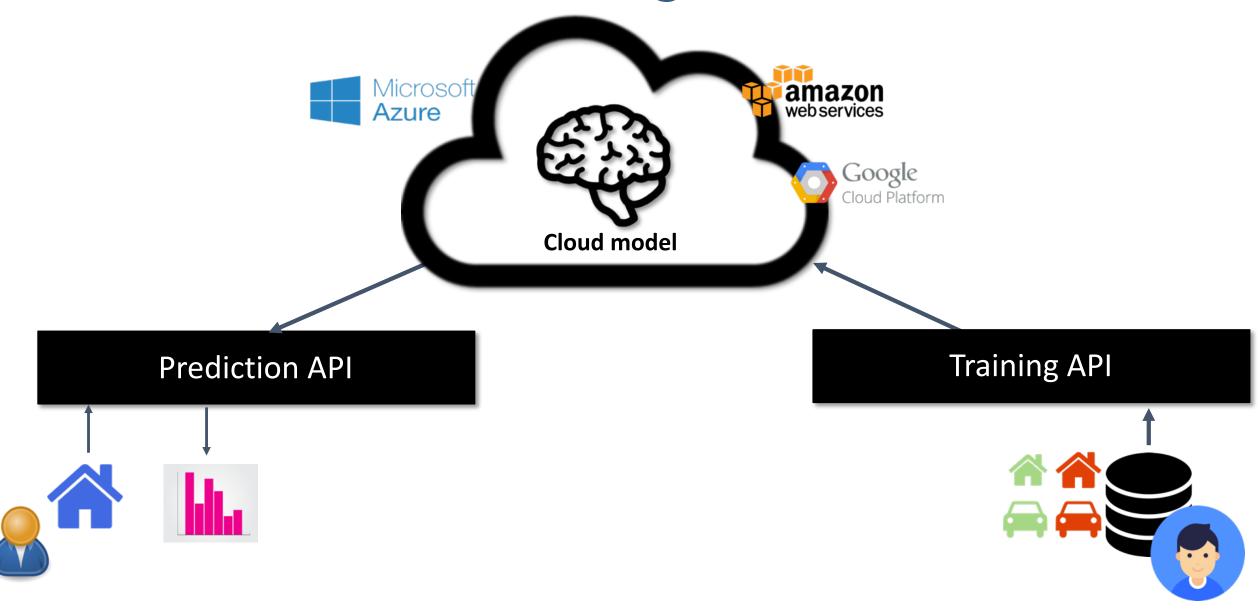
Well-understood problem, besides the more obvious leakage

Establish wrongdoing

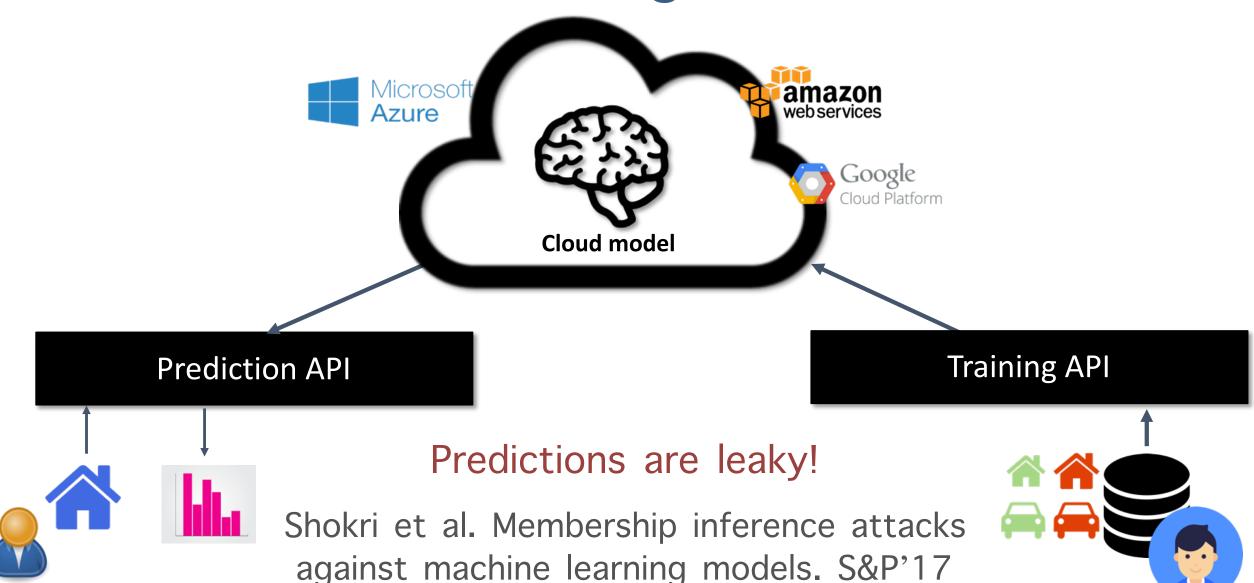
Assess protection, e.g., from differentially private defenses

Machine Learning as a Service

Machine Learning as a Service

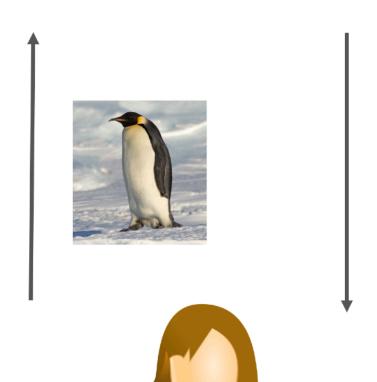


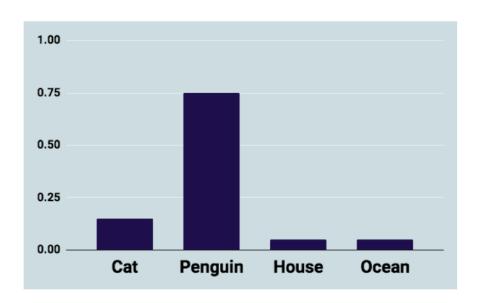
Machine Learning as a Service

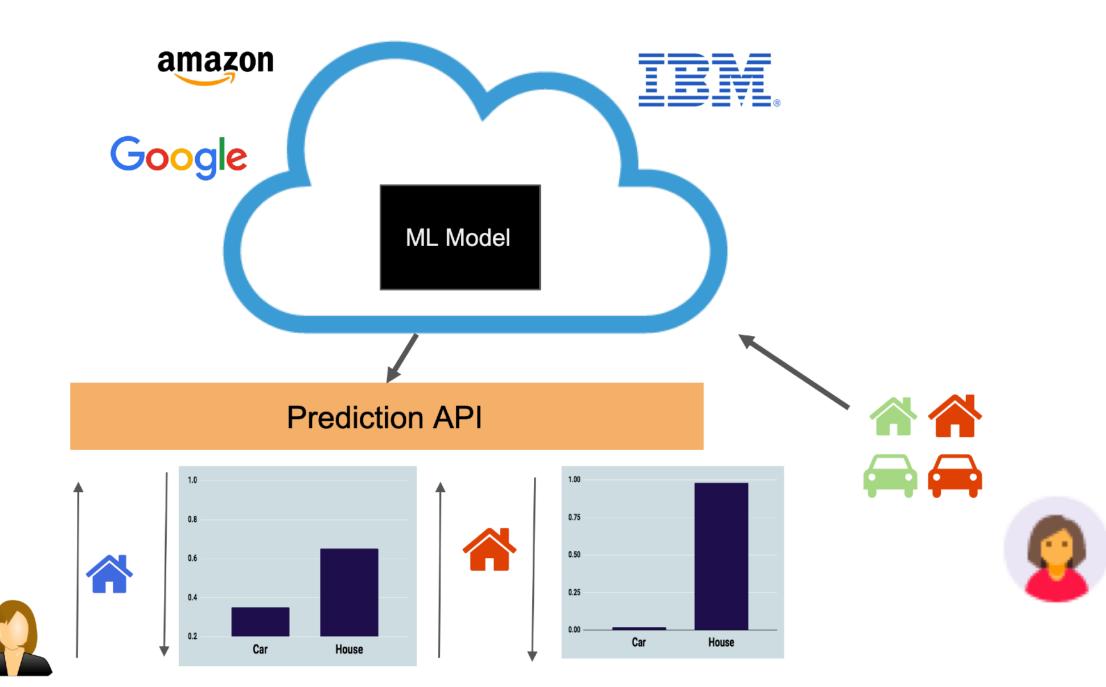


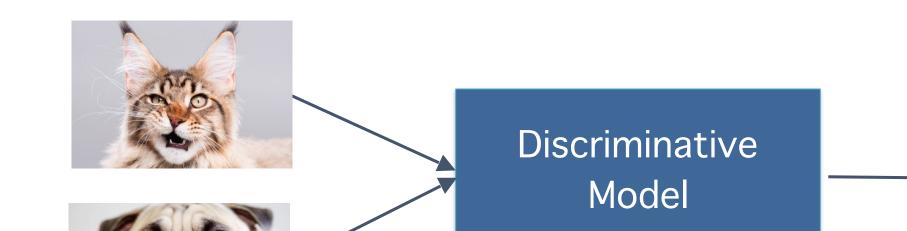
Membership Inference/Discriminative

Prediction API

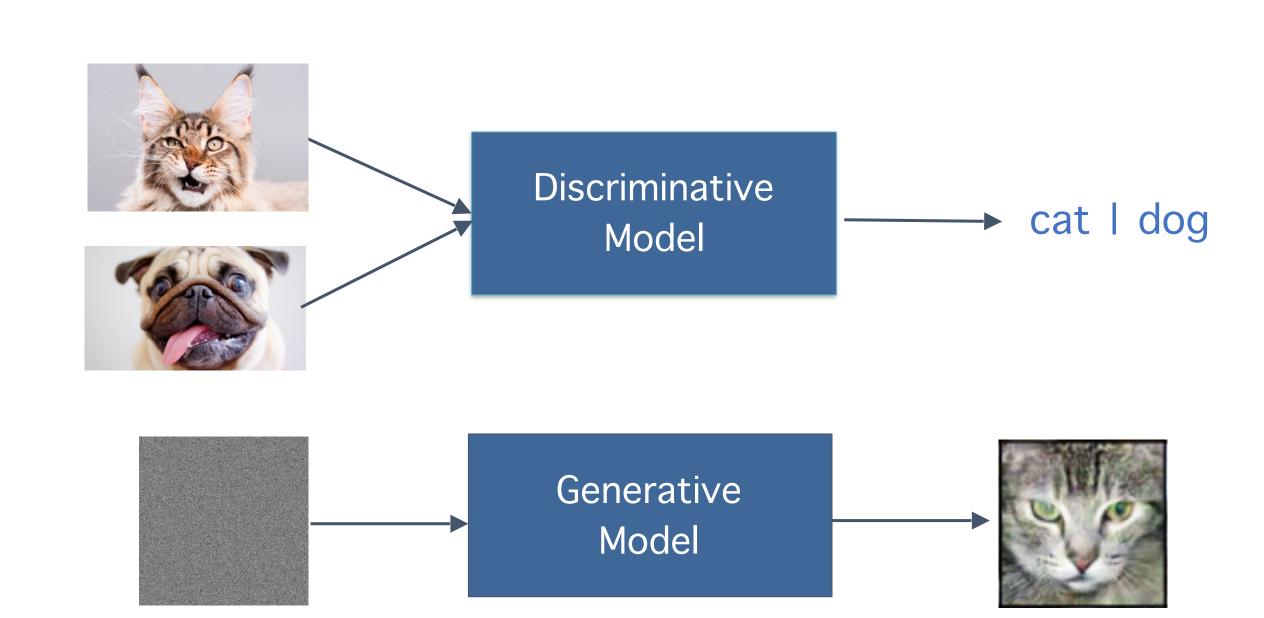






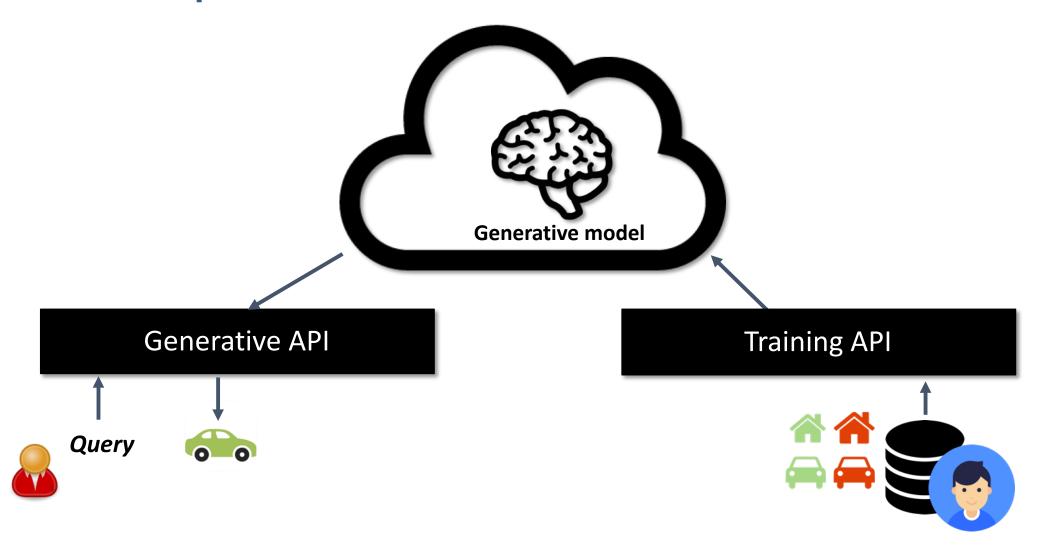


→ cat I dog



Membership Inference in Generative Models?

Membership Inference in Generative Models?



Inference without predictions?

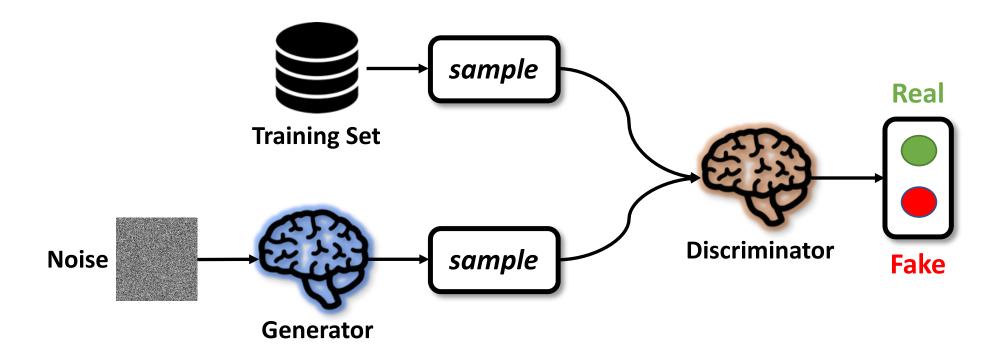
Use generative models!

Train GANs to learn the distribution and a prediction model at the same time

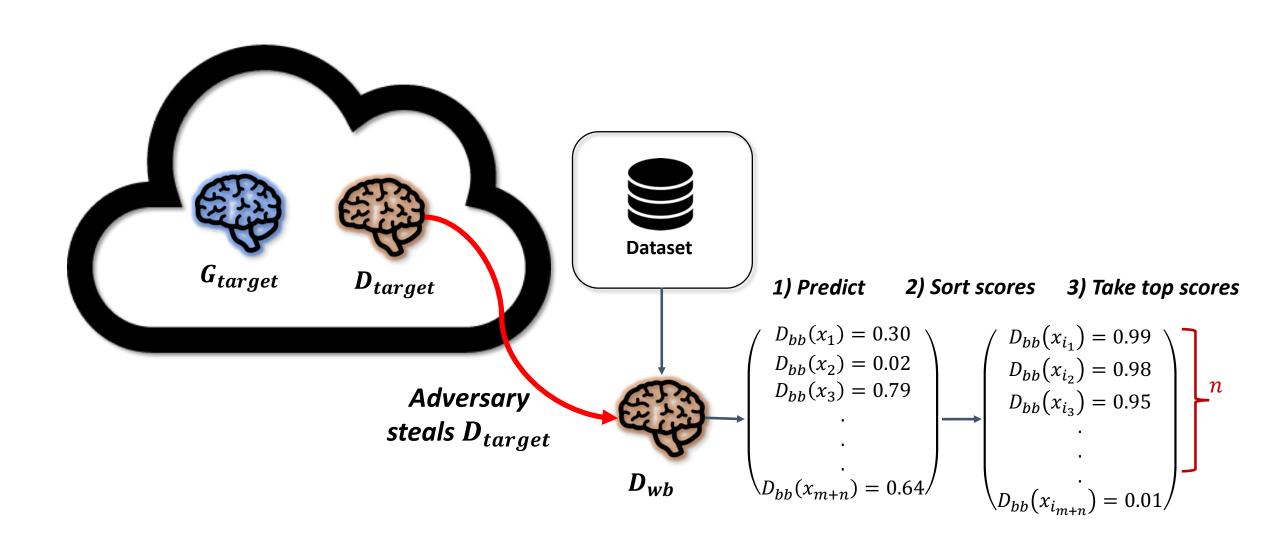
Inference without predictions?

Use generative models!

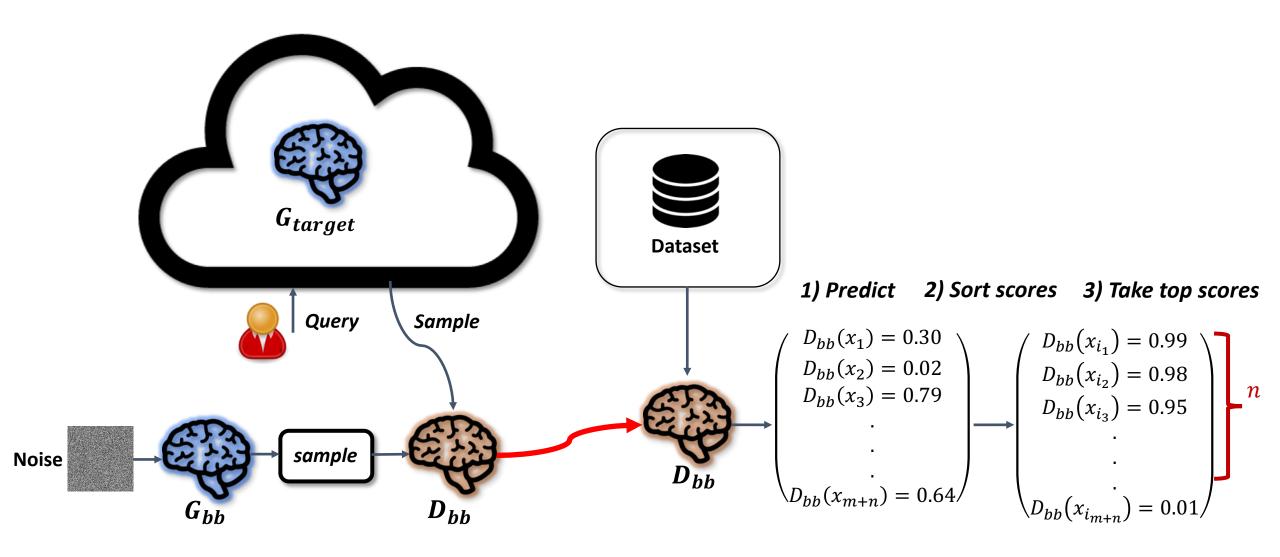
Train GANs to learn the distribution and a prediction model at the same time



White-Box Attack



Black-Box Attack



Datasets

Models

sample

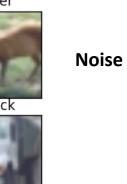
sample

Real

Discriminator

LFW

CIFAR-10



Training

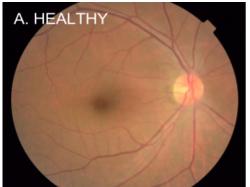
Set

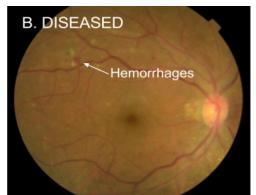
Generator

DCGAN

Target Model:

DCGAN, DCGAN+VAE, BEGAN

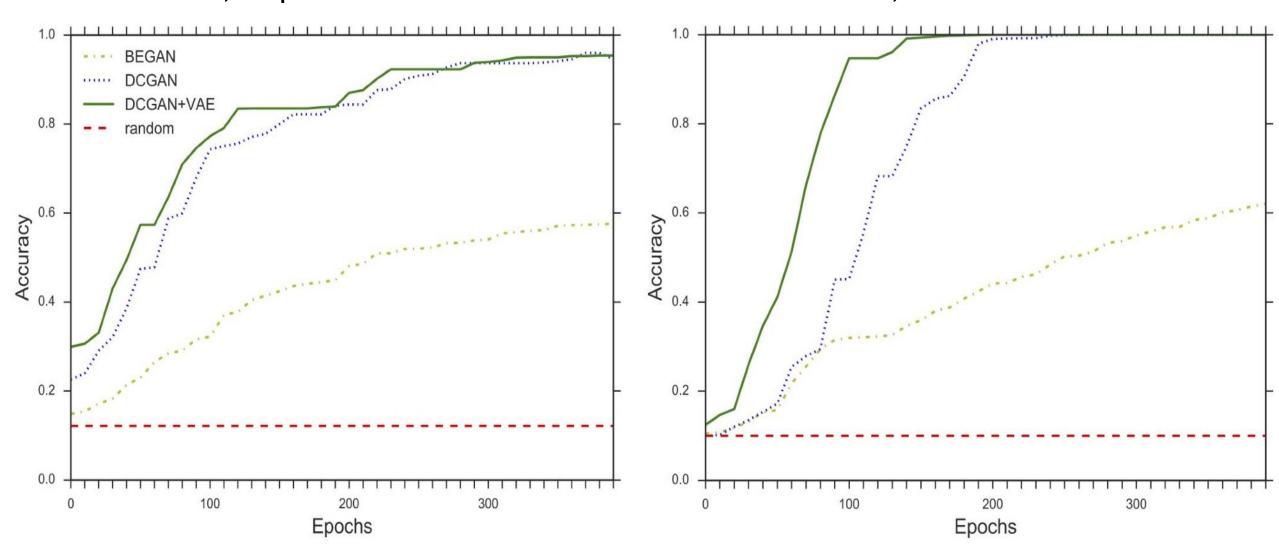




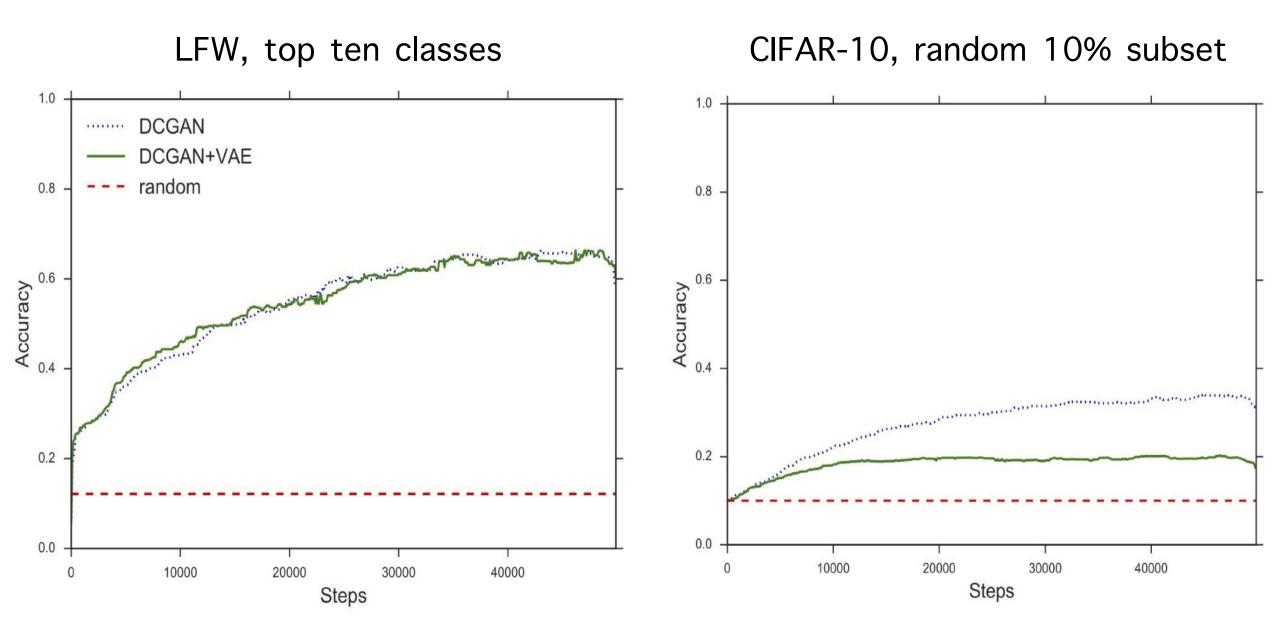
White-Box Results

LFW, top ten classes

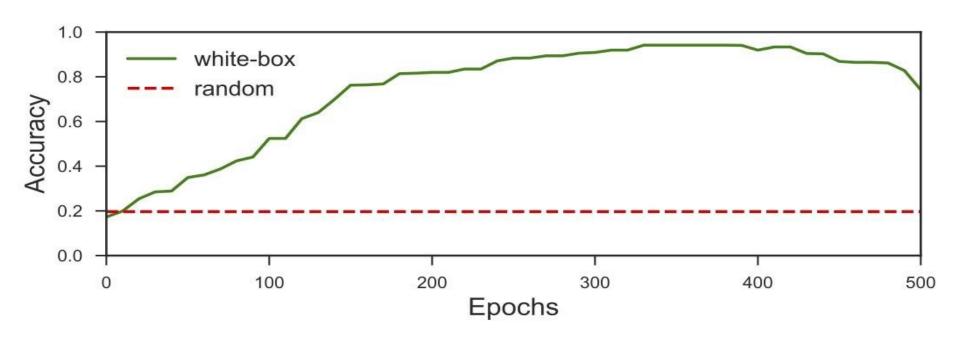
CIFAR-10, random 10% subset



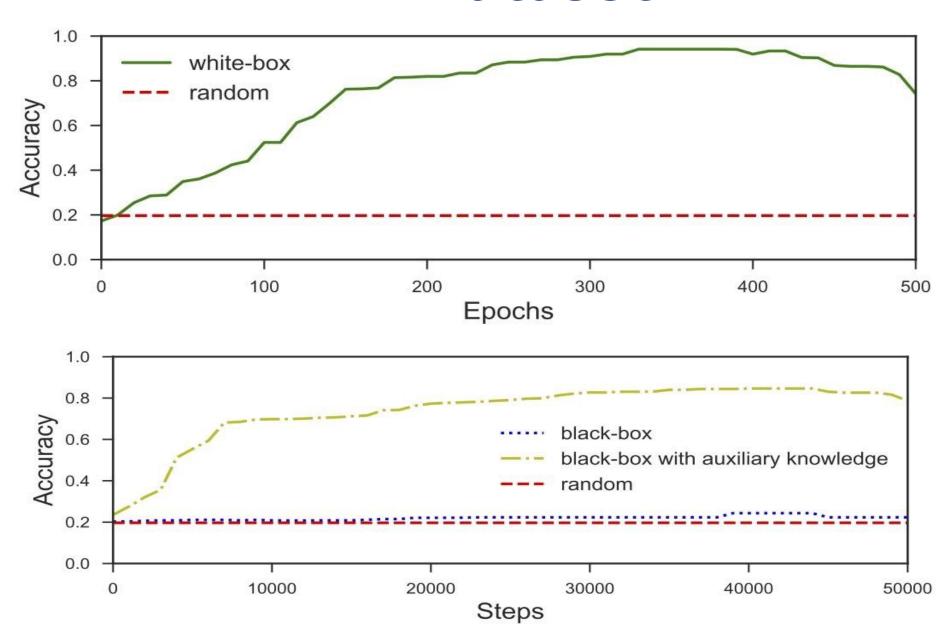
Black-Box Results

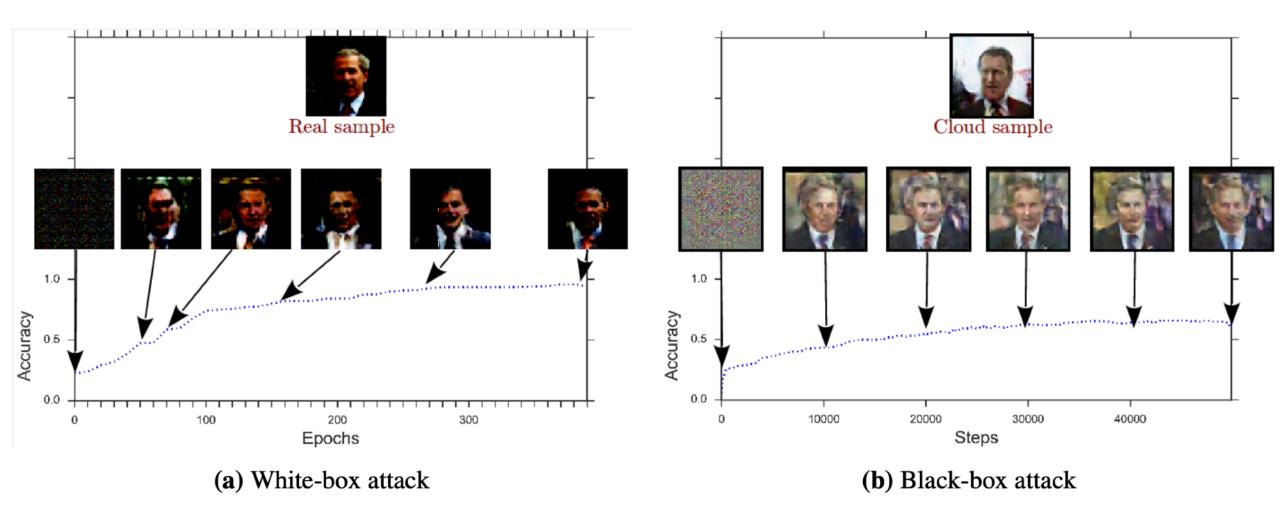


DR Dataset



DR Dataset

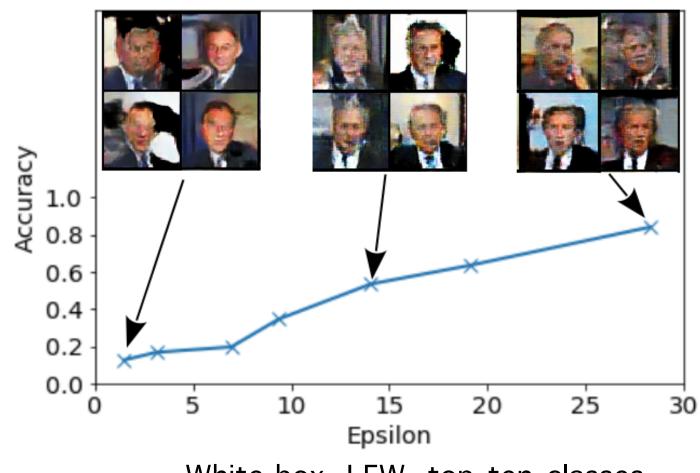




In a nutshell...

Attack	LFW	CIFAR-10	DR
White-box	100%	100%	95%
Black-box	40%	37%	22%
Black-box with aux knowledge	60%	58%	81%
Random guess	10%	10%	20%

Defense? Differentially Private GAN?



White-box, LFW, top ten classes

^{*}Triastcyn et al. "Generating differentially private datasets using GANs." arXiv 1803.03148

Thank you!

