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Membership 
Inference This talk!

Model Inversion —> Fredrikson et al., Model inversion attacks that exploit confidence 
information and basic countermeasures. ACM CCS’15. 
Property Inference —> Melis et al., Exploiting Unintended Feature Leakage in Collaborative 
Learning. IEEE S&P’19
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Well-understood problem, besides the more obvious leakage
Establish wrongdoing
Assess protection, e.g., from differentially private defenses
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Machine Learning as a Service

Predictions are leaky! 
Shokri et al. Membership inference attacks 
against machine learning models. S&P’17
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White-Box Attack

!"#

Dataset

$%% &'( = 0.99
$%% &'- = 0.98
$%% &'/ = 0.95

.

.

.
$%% &'123 = 0.01

$%% &5 = 0.30
$%% &7 = 0.02
$%% &9 = 0.79

.

.

.
$%% &;<= = 0.64

1) Predict 2) Sort scores

@

3) Take top scoresABCDEFB !BCDEFB

Adversary 
steals !BCDEFB



Black-Box Attack

Noise
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Datasets

LFW

CIFAR-10

DR

Models

Attacker Model:  
    DCGAN 
Target Model:  
    DCGAN, DCGAN+VAE, BEGAN 
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White-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset
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In a nutshell…
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Attack LFW CIFAR-10 DR

White-box 100% 100% 95%

Black-box 40% 37% 22%

Black-box with 
aux knowledge 60% 58% 81%

Random guess 10% 10% 20%



Defense? Differentially Private GAN?

White-box, LFW, top ten classes 
 

*Triastcyn et al. “Generating differentially private datasets using GANs.” arXiv 1803.03148



Thank you!

�21


