Some useful properties for ML

• Theorem (Post-processing): If M(D) is ϵ -private, and f is any function, then f(M(D)) is ϵ -private.

- Theorem (Composition): If $M_1, ..., M_k$ are ϵ -private, then $M(D) \equiv (M_1(D), ..., M_k(D))$ is $(k * \epsilon)$ -private.
- We can design algorithms as we normally would. Just access the data using differentially private subroutines, and keep track of our "privacy budget" (modularity)

Private Kernel K-means with Random Fourier Features