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Prologue

Privacy-Enhancing Technologies (PETs):
Increase privacy of users, groups, and/or organizations

PETs often respond to privacy threats
Protect personally identifiable information
Support anonymous communications
Privacy-respecting data processing

Another angle: privacy as an enabler
Actively enabling scenarios otherwise impossible w/o 
clear privacy guarantees
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Sharing Information w/ Privacy

Needed when parties with limited mutual trust 
willing or required to share information

Only the required minimum amount of information should be 
disclosed in the process
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Private Set Intersection?

DHS (Terrorist Watch List) and Airline (Passenger List)
Find out whether any suspect is on a given flight 

IRS (Tax Evaders) and Swiss Bank (Customers)
Discover if tax evaders have accounts at foreign banks 

Hoag Hospital (Patients) and SSA (Social Security DB)
Patients with fake Social Security Number

4



Genomics
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From: James Bannon, ARK 6



From: The Economist
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But… not all data are 
created equal!

13



Privacy Researcher’s Perspective

Treasure trove of sensitive information
Ethnic heritage, predisposition to diseases 

Genome = the ultimate identifier
Hard to anonymize / de-identify

Sensitivity is perpetual
Cannot  be “revoked”
Leaking one’s genome ≈ leaking relatives’ genome
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Secure Genomics?

Privacy:
Individuals remain in control of their genome
Allow doctors/clinicians/labs to run genomic tests, while 
disclosing the required minimum amount of information, i.e.:

(1) Individuals don’t disclose their entire genome
(2) Testing facilities keep test specifics (“secret sauce”) 
confidential

[BBDGT11]: Secure genomics via PSI
Most personalized medicine tests in < 1 second
Works on Android too

15



Genetic Paternity Test

A Strawman Approach for Paternity Test:
On average, ~99.5% of any two human genomes are identical
Parents and children have even more similar genomes
Compare candidate’s genome with that of the alleged child:

Test positive if percentage of matching nucleotides is > 99.5 + τ 

First-Attempt Privacy-Preserving Protocol:
Use an appropriate secure two-party protocol for the comparison
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Private Set Intersection 
Cardinality  (PSI-CA)

Server Client

S = {s1,, sw} C = {c1,,cv}

PSI-CA

S∩C
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Genetic Paternity Test

A Strawman Approach for Paternity Test:
On average, ~99.5% of any two human genomes are identical
Parents and children have even more similar genomes
Compare candidate’s genome with that of the alleged child:

Test positive if percentage of matching nucleotides is > 99.5 + τ 

First-Attempt Privacy-Preserving Protocol:
Use an appropriate secure two-party protocol for the comparison
PROs: High-accuracy and error resilience
CONs: Performance not promising (3 billion symbols in input)

In our experiments, computation takes a few days
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Wait a minute!
~99.5% of any two human genomes are identical
Why don’t we compare only the remaining 0.5%?
We can compare by counting how many

But… We don’t know (yet) where exactly this 
0.5% occur!
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Private Set 
Intersection 
Cardinality

 Test Result: 
 (#fragments with same length)

Private RFLP-based Paternity Test
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doctor
or lab

genome

individual

test specifics

Secure 
Function 

Evaluation

test result test result

• Private Set Intersection (PSI)
• Authorized PSI
• Private Pattern Matching
• Homomorphic Encryption
• Garbled Circtuis
• […]

Output reveals nothing beyond 
test result

• Paternity/Ancestry Testing
• Testing of SNPs/Markers 
• Compatibility Testing
• Disease Predisposition […]
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Personalized Medicine (PM)

Drugs designed for patients’ genetic features
Associating drugs with a unique genetic fingerprint
Max effectiveness for patients with matching genome
Test drug’s “genetic fingerprint” against patient’s genome  

Examples:
tmpt gene – relevant to leukemia

(1) G->C mutation in pos. 238 of gene’s c-DNA, or (2) G->A 
mutation in pos. 460 and one A->G is pos. 419 cause the tpmt 
disorder (relevant for leukemia patients)

hla-B gene – relevant to HIV treatment
One G->T mutation (known as hla-B*5701 allelic variant) is 
associated with extreme sensitivity to abacavir (HIV drug)
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Privacy-preserving PM Testing (P3MT)
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Challenges:
Patients may refuse to unconditionally release their 
genomes

Or may be sued by their relatives…
DNA fingerprint corresponding to a drug may be proprietary:
ü  We need privacy-protecting fingerprint matching

But we also need to enable FDA approval on the drug/
fingerprint
ü  We reduce P3MT to Authorized Private Set Intersection 
(APSI) 



Authorized Private Set Intersection (APSI)

Server Client

S = {s1,, sw} C = {(c1,auth(c1)),, (cv,auth(cv ))}

Authorized Private  
Set Intersection

S∩C =
def

sj ∈ S ∃ci ∈C : ci = sj ∧auth(ci ) is valid{ }
Court
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Reducing P3MT to APSI
Intuition:

FDA = Court, Pharma = Client, Patient = Server
Patient’s private input set:
Pharmaceutical company’s input set: 

Each item in            needs to be authorized by FDA
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fp(D) = bj
* || j( ){ }

G = (bi || i) bi ∈ {A,C,G,T}{ }i=1
3⋅109

fp(D)

Patient

APSI

Court

Company

G = (bi || i){ } fp(D) = bj
* || j( ){ }fp(D) = bj

* || j( ),auth bj
* || j( )( ){ }

Test Result



P3MT – Performance Evaluation

Pre-Computation
Patient’s pre-processing of the genome: a few days
Optimization:

Patient applies reference-based compression techniques
Input all differences with “reference” genome (0.5%)

Online Computation
Depend (linearly) on fingerprint size – typically a few 
nucleotides, <1s for most tests

Communication
Depends on the size of encrypted genome (about 4GB)
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Open Problems?
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Micro-blogging

28



@Alice and @Bob – Twitter edition
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Follow @Bob

There might be no mutual knowledge/trust between Alice and Bob

Follow requests are approved by default (opt-out)

Tweets are public by default
Streamed into www.twitter.com/public_timeline, available through API
But Bob can restrict his tweets to followers

All public tweets are searchable by hashtag

@Alice

I’m on the #pavement thinking
about the #governmentI’m on the #pavement… 

….

@Bob



#Privacy and Twitter

Twitter.com is “trusted” to
Get all tweets
Enforce coarse-grained access control (follower-only)
Monitor relations between users

Privacy and Twitter
Targeted advertisement, PII collected and shared with 
third parties
Trending topics, real-time “news” 

I don’t care about #privacy on @Twitter… but
Remember @Wikileaks? Snowden?
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Our proposal: Hummingbird

Follow by hashtag:
E.g., @Alice follows @Bob only on hashtag #privacy

Tweeter (@Bob)
Learns who follows him but not which hashtags have 
been subscribed to

Follower (@Alice)
Learns nothing beyond her own subscriptions

Server (HS)
Doesn’t learn tweets’ content or hashtags of interest

(But can scale to million of tweets/users)
31
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33HS Alice (ht)

r ∈ ZNb

(Nb,eb )

µ = H (ht) ⋅ reb(Alice,Bob,μ)

33HS Bob

µ ' = µ db

(Alice,μ) 

(μ’)

HS Alice (ht)

δ = µ '/ r
(Bob, μ’)

t = H '(δ)(Alice,Bob,t)

  Issue Request  .

         Approve      .

Finalize Request
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35HS Bob(db,M,ht*)

δ = H (ht*)db
k*= H ''(δ)

Tweet
t*= H '(δ)

(t*,ct*)

HS
Oblivious 
Matching

For all (U,V,t) s.t. V=‘Bob’ and 
t=t*:
    Store and mark (Bob,t*,ct*) for 
    delivering (t*,ct*) to Alice

ct*= Enck*(M )

35HS Alice(δ,t)

k = H ''(δ)
Read

M = Deck (ct*)

(Bob, t*, ct*)



Overhead
Follow protocol: Alice wants to follow Bob on #privacy

Bob’s computation: 1 CRT-RSA signature (<1ms) per hashtag
Alice’s computation: 2 mod multiplications per hashtag
Communication: 2 RSA group elements (<1KB)

Tweet: Bob tweets “I’m at #fosad!”
Computation: 1 CRT-RSA signature (<1ms) per hashtag, 1 AES enc
Communication: 1 hash output (160-bit)

Read
Computation: 1 AES decryption
Communication: 1 hash output (160-bit)

Server
No crypto!
Overhead: matching of PRF outputs, 160-bit

Can do efficiently, just like for cleartexts
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Collecting Statistics Privately?  
 

Collaboratively Train Machine 
Learning Models, Privately? 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Why are statistics important?

Examples:
1. Recommender systems for online streaming services
2. Statistics about mass transport movements
3. Traffic statistics for the Tor Network

How about privacy?
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BBC keeps 500-1000 free programs on iPlayer 

No account, no tracking, no ads 

Still, BBC wants to collect statistics, offer 
recommendations to its users 

E.g., you have watched Dr Who, maybe you’ll like 
Sherlock Homes too! 

39 

Private Recommendations



40 

Predict favorite items for users based on their own 
ratings and those of “similar” users 
Consider N users, M  TV programs and binary 
ratings (viewed/not viewed) 
Build a co-views matrix C, where Cab is the number 
of views for the pair of programs (a,b) 
Compute the Similarity Matrix 
 
 
Identify K-Neighbours (KNN) based on matrix 

Item-KNN Recommendation



Privacy-Preserving Aggregation

Goal: aggregator collects matrix, s.t.
Can only learn aggregate counts (e.g., 237 users have 
watched both a and b)
Not who has watched what

Use additively homomorphic encryption?
EncPK(a)*EncPK (b) = EncPK (a+b)
How can I used it to collect statistics?
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Keys summing up to zero

Users U1, U2, …, UN, each has k1, k2, …, kN s.t. 
k1+k2+…+kN=0

 
Now how can I use this?

42
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Is this efficient?



Preliminaries: Count-Min Sketch

An estimate of an item’s frequency in a stream 
Mapping a stream of values (of length T) into a matrix of size 
O(logT) 
The sum of two sketches results in the sketch of the union of 
the two data streams
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Security & Implementation

Security
In the honest-but-curious model under the CDH assumption  

Prototype implementation:
Tally as a Node.js web server 

Users run in the browser or as a mobile cross-
platform application (Apache Cordova)

Transparency, ease of use, ease of deployment
45
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User side 

Server side 



Accuracy
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Aggregate statistics about the number of hidden 
service descriptors from multiple HSDirs 

Median statistics to ensure robustness 

Problem: Computation of statistics from collected 
data can potentially de-anonymize individual Tor 
users or hidden services 
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Tor Hidden Services



We rely on: 
A set of authorities 
A homomorphic public-key scheme (AH-ECC) 
Count-Sketch (a variant of CMS) 

Setup phase 
Each authority generates their public and private key 
A group public key is computed 

 

49 

Private Tor Statistics?



Each HSDir (router) builds a Count-Sketch, inserts 
its values, encrypts it, sends it to a set of authorities 
The authorities:  

Add the encrypted sketches element-wise to 
generate one sketch characterizing the overall 
network traffic 
Execute a divide and conquer algorithm on this 
sketch to estimate the median 
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Private Tor Statistics?



The range of the possible values is known 

On each iteration, the range is halved and the sum 
of all the elements on each half is computed  

Depending on which half the median falls in, the 
range is updated and again halved 

Process stops once the range is a single element 
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How we do it (1/2)
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Output privacy: 
Volume of reported values within each step is leaked 
Provide differential privacy by adding Laplacian noise to 
each intermediate value 
 

How we do it (2/2)
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Experimental setup: 
1200 samples from a mixture distribution 
Range of values in [0,1000]  
 

Performance evaluation: 
Python implementation (petlib) 
1 ms to encrypt a sketch (of size 165) for each HSDir and 
1.5 sec to aggregate 1200 sketches 
 

Evaluating
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Collaborative Threat 
Mitigation
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Collaborative Anomaly Detection

Anomaly detection is hard
Suspicious activities deliberately mimic normal behavior
But, malevolent actors often use same resources

Wouldn’t it be better if organizations 
collaborated?

It’s a win-win, no?
“It is the policy of the United States Government to 
increase the volume, timelines, and quality of cyber threat 
information shared with U.S. private sector entities so that 
these entities may better protect and defend themselves 
against cyber attacks.”

Barack Obama
2013 State of the Union Address 
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Problems with Collaborations

Trust
Will others leak my data?

Legal Liability
Will I be sued for sharing customer data? 
Will others find me negligible?

Competitive concerns
Will my competitors outperform me? 

Shared data quality
 Will data be reliable?
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Solution Intuition [FDB15] 

tnow
Sharing 

Information 
w/ Privacy

Company 2

tnow

Company 1

Better Analytics

Securely assess 
the benefits of 

sharing
Securely assess 

the risks of 
sharing
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1. Estimate Benefits

What are good indicators of the fact that sharing will 
be beneficial?  

•  Many attackers in common?

•  Many similar attacks in common?

•  Many correlated attacks in common?
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2. Select Partners

How do I choose who to collaborate with?  

•  Collaborate with the top-k?

•  Collaborate if benefit above threshold?

•  Hybrid?
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3. Merge

Once we partnered up, what do we share?  

•  Everything?

•  Just what we have in common?

•  Just information about attacks or also metadata?
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System Model

Network of n entities {V_i} (for i=1,…,n)

Each V_i holds a dataset S_i of suspicious events
E.g., events in the form ⟨IP, time, port⟩ as observed by a 
firewall or an IDS
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Select 

Estimate Benefits 
Intersection-Size(Si,Sj) 
Jaccard(Si,Sj) 
Correlation(Si,Sj) 
Cosine(Si,Sj) 

Partner 
Decide 

Benefit > threshold 
Maximize benefits 

Merge 
Share 

Intersection(Si,Si) 
Union(Si,Si) 

Entity Vi(Si)! Entity Vj(Sj)!

(1)!

! 

Select 

Estimate Benefits 
Intersection-Size(Si,Sj) 
Jaccard(Si,Sj) 
Correlation(Si,Sj) 
Cosine(Si,Sj) 

Partner 
Decide 

Benefit > threshold 
Maximize benefits 

Merge 
Share 

Intersection(Si,Si) 
Union(Si,Si) 

! (2)!

(3)!
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Privacy-preserving benefit estimation

Metric Operation Private Protocol 

Intersection-Size Private Set Intersection 
Cardinality (PSI-CA)

Jaccard Private Jaccard Similarity 
(PJS)

Pearson Garbled Circuits (2PC)

Cosine Private Cosine Similarity 
(PCS)

3.2 Select
Entities select collaboration partners by evaluating, in

pairwise interactions, the potential benefits of sharing
their data with each other. In other words, potential
benefits decide partnerships. This is done in a privacy-
preserving way, as only a measure of anticipated benefits
is revealed and nothing about datasets’ content.

Supported Metrics. We consider several similarity met-
rics for collaborator selection. Metrics are reported in
Table 1, along with the corresponding protocols for their
privacy-preserving computation (see Sec. 2.2 for more
details on the related cryptographic protocols).

We consider similarity metrics because previous
work [27, 57] showed that collaborating with correlated
victims works well in centralized systems. Victims were
deemed correlated if they were targeted by correlated at-
tacks, i.e., attacks mounted by the same source IP against
different networks around the same time. Intuitively, cor-
relation arises from attack trends; in particular, correlated
victim sites may be on a single hit list or might be natural
targets of a particular exploit (e.g., PHP vulnerability).
Then, collaboration helps re-enforce knowledge about
an on-going attack and/or learn about an attack before
it hits.

Set-based and Correlation-based Similarity. We con-
sider Intersection-Size and Jaccard, which measure set
similarity and operate on (unordered) sets. We also con-
sider Pearson and Cosine, which provide a more refined
measure of similarity than set-based metrics, as they also
capture statistical relationships.

These last two metrics operate on data structures rep-
resenting attack events, such as a binary vector, e.g.,
~Si = [si1 si2 · · ·siN ], of all possible IP addresses with 1-
s if an IP attacked at least once and 0-s otherwise. This
can make it difficult to compute correlation in practice,
as both parties need to agree on the range of IP addresses
under consideration to construct vector ~Si. Considering
the entire range of IP addresses is not reasonable (i.e.,
this would require a vector of size 3.7 billion, one entry
for each routable IP address). Rather, parties could either
agree on a range via 2PC or fetch a list of malicious IPs
from a public repository.

In practice, entities could decide to compute any com-
bination of metrics. In fact, the choice of metrics could
be negotiated for each interaction. Also, the list of met-
rics reported in Table 1 is non-exhaustive and others
could be considered, e.g., for problems and datasets of
different nature, as long as there exist a practical tech-
nique to securely evaluate them. Moreover, the benefits
of collaboration might depend on other factors such as
the amount and type of data merged, as well as the repu-
tation of other parties.

Metric Operation Private Protocol
Intersection- |Si \S j| PSI-CA [13]Size

Jaccard
|Si \S j|
|Si [S j|

PJS [5]

Pearson ÂN
l=1

(sil �µi)(s jl �µ j)

Nsis j

Garbled
Circuits [24]

Cosine
~Si~S j

k~Sikk~S jk
Garbled

Circuits [24]

Table 1: Metrics for estimating potential benefits of data shar-
ing between Vi and Vj, along with corresponding protocols for
their secure computation. µi,µ j and si,s j denote, resp., mean
and standard deviation of ~Si and ~S j.

Establishing Partnerships. After assessing the poten-
tial benefits of data sharing, entities make an informed
decision as to whether or not to collaborate. A few pos-
sible strategies for choosing partners are:

1. Threshold-based: Vi and Vj partner up if the esti-
mated benefit of sharing is above a certain thresh-
old;

2. Maximization: Vi and Vj independently enlist k po-
tential partners to maximize their overall benefits
(i.e., k entities with maximum expected benefits);

3. Hybrid: Vi and Vj enlist k potential partners to max-
imize their overall benefits, but also partner with en-
tities for which estimated benefits are above a cer-
tain threshold.

In practice, entities might refuse to collaborate with
other entities that do not generate enough benefits.
One solution is to rely on well-known collabora-
tion algorithms that offer stability (e.g., Stable Mar-
riage/Roommate Matching [20]). Without lack of gener-
ality, we leave this for future work and assume collabora-
tive parties: entities systematically accept collaboration
requests.

Symmetry of Benefits. Some of the 2PC protocols we
use for secure computation of benefits, such as PSI-
CA [13] and PJS [5], actually reveal the output of the
protocol to only one party. Without loss of generality,
we assume that this party always reports the output to its
counterpart. We operate in the semi-honest model, thus
parties are assumed not to prematurely abort protocols.

Also note that the metrics discussed above are symmet-
ric, in the sense that both parties obtain the same value.
These metrics facilitate partner selection as both parties
have incentive to select each other.
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parties are assumed not to prematurely abort protocols.

Also note that the metrics discussed above are symmet-
ric, in the sense that both parties obtain the same value.
These metrics facilitate partner selection as both parties
have incentive to select each other.
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3.2 Select
Entities select collaboration partners by evaluating, in

pairwise interactions, the potential benefits of sharing
their data with each other. In other words, potential
benefits decide partnerships. This is done in a privacy-
preserving way, as only a measure of anticipated benefits
is revealed and nothing about datasets’ content.

Supported Metrics. We consider several similarity met-
rics for collaborator selection. Metrics are reported in
Table 1, along with the corresponding protocols for their
privacy-preserving computation (see Sec. 2.2 for more
details on the related cryptographic protocols).

We consider similarity metrics because previous
work [27, 57] showed that collaborating with correlated
victims works well in centralized systems. Victims were
deemed correlated if they were targeted by correlated at-
tacks, i.e., attacks mounted by the same source IP against
different networks around the same time. Intuitively, cor-
relation arises from attack trends; in particular, correlated
victim sites may be on a single hit list or might be natural
targets of a particular exploit (e.g., PHP vulnerability).
Then, collaboration helps re-enforce knowledge about
an on-going attack and/or learn about an attack before
it hits.

Set-based and Correlation-based Similarity. We con-
sider Intersection-Size and Jaccard, which measure set
similarity and operate on (unordered) sets. We also con-
sider Pearson and Cosine, which provide a more refined
measure of similarity than set-based metrics, as they also
capture statistical relationships.

These last two metrics operate on data structures rep-
resenting attack events, such as a binary vector, e.g.,
~Si = [si1 si2 · · ·siN ], of all possible IP addresses with 1-
s if an IP attacked at least once and 0-s otherwise. This
can make it difficult to compute correlation in practice,
as both parties need to agree on the range of IP addresses
under consideration to construct vector ~Si. Considering
the entire range of IP addresses is not reasonable (i.e.,
this would require a vector of size 3.7 billion, one entry
for each routable IP address). Rather, parties could either
agree on a range via 2PC or fetch a list of malicious IPs
from a public repository.

In practice, entities could decide to compute any com-
bination of metrics. In fact, the choice of metrics could
be negotiated for each interaction. Also, the list of met-
rics reported in Table 1 is non-exhaustive and others
could be considered, e.g., for problems and datasets of
different nature, as long as there exist a practical tech-
nique to securely evaluate them. Moreover, the benefits
of collaboration might depend on other factors such as
the amount and type of data merged, as well as the repu-
tation of other parties.
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decision as to whether or not to collaborate. A few pos-
sible strategies for choosing partners are:

1. Threshold-based: Vi and Vj partner up if the esti-
mated benefit of sharing is above a certain thresh-
old;

2. Maximization: Vi and Vj independently enlist k po-
tential partners to maximize their overall benefits
(i.e., k entities with maximum expected benefits);

3. Hybrid: Vi and Vj enlist k potential partners to max-
imize their overall benefits, but also partner with en-
tities for which estimated benefits are above a cer-
tain threshold.

In practice, entities might refuse to collaborate with
other entities that do not generate enough benefits.
One solution is to rely on well-known collabora-
tion algorithms that offer stability (e.g., Stable Mar-
riage/Roommate Matching [20]). Without lack of gener-
ality, we leave this for future work and assume collabora-
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requests.
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counterpart. We operate in the semi-honest model, thus
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Sharing Strategy Operation Private Protocol
Intersection Si \S j PSI [14]

Intersection with {hIP,time,porti| PSI with
Associated Data IP 2 Si \S j} Data Transfer [14]

Union with {hIP,time,porti| –Associated Data IP 2 Si [S j}

Table 2: Strategies for merging datasets among partners Vi and
Vj, along with corresponding protocols for their secure compu-
tation.

3.3 Merge
After the Select stage, entities are organized into data

sharing coalitions, that is, groups of victims that decided
to share data with each other. Entities can now merge
their datasets with selected partners.

Strategies. Partners can merge their datasets in sev-
eral ways. For instance, they can disclose their whole
data or only share which IP addresses they have in com-
mon. They can also transfer all attack events associated
to common addresses, as well as a selection thereof.

Privacy-preserving Merging. We guarantee privacy by
ensuring that nothing about datasets, beyond what is
agreed, is disclosed to partners. For instance, if partners
agree to only share information about attackers they have
in common, they should not learn any other information.
Again, similar to select algorithms, we assume that the
output of the merging protocol is revealed to both par-
ties. Possible merging strategies, along with correspond-
ing privacy-preserving protocols, are reported in Table 2.

Strategies denoted as Intersection/Union with Associ-
ated Data mean that parties not only compute and share
the intersection (or union), but also all events related
to items in the resulting set. The secure computation
of Intersection with Associated Data is possible with a
PSI variant, denoted as PSI with Data Transfer [14] (see
Sec. 2.2). In contrast, the computation of Union with As-
sociated Data does not yield any privacy protection, as all
events are mutually shared.

Note that parties could also limit the information shar-
ing in time. They could only reveal data older than a
month or of the last week. Other options include relying
on previously suggested sanitization or encrypted aggre-
gation techniques.

3.4 Properties of the SIC Framework

Privacy. SIC offers privacy through limited information
sharing. Only data explicitly authorized by parties, and
of interest to other parties, is actually shared. Therefore,
the threat of information leakage is reduced. Data shar-

ing occurs by means of secure two-party computation
techniques, thus, security follows, provably, from that of
underlying cryptographic primitives.

Authenticity. We assume semi-honest adversaries, i.e.,
entities do not alter their input datasets. If one relaxes
this assumption, then it would become possible for a ma-
licious entity to inject fake inputs or manipulate datasets
to violate counterpart’s privacy. Nonetheless, we argue
that assuming honest-but-curious entities is realistic in
our model. First, organizations can establish long-lasting
relations and reduce the risk of malicious inputs as mis-
behaving entities will eventually get caught. Second,
given SIC’s peer-to-peer nature, one could also lever-
age peer-to-peer techniques to detect malicious behav-
ior [42].

Incentives and Competitiveness. Since data exchanges
are bi-directional, each party directly benefits from par-
ticipation and can quantify the contribution of its part-
ners. If collaboration metrics do not indicate high poten-
tial, each entity can deny collaboration. In other words,
the incentive to participate is immediate as benefits can
be quantified before establishing partnerships.

Trust. SIC relies on data to establish trust automati-
cally, as previously explored by the peer-to-peer com-
munity [42]. If multiple entities report similar data, then
it is likely correct and contributors can be considered
as trustworthy. SIC enables entities to estimate each
others’ datasets and potential collaboration value. This
added transparency increases awareness of the contribu-
tion value and enables automation of trust establishment.

Speed. Due to the lack of a central authority and/or ex-
ternal vetting processes, collaboration and data sharing
in SIC are instantaneous. Thus, it is possible for entities
to interact as often and as fast as they wish.

4 The DShield Dataset: Overview and Key
Characteristics

In order to assess the effectiveness of the SIC frame-
work, we should ideally obtain security data from real-
world organizations. Such datasets are hard to obtain
because of their sensitivity. As a consequence, we turn
to DShield.org [45] and obtain a dataset of firewall and
IDS logs contributed by individuals and small organi-
zations. DShield contains data contributors are willing
to report, not what they actually observe. As previous
work [47, 57], we assume strong correlation between the
amount of reporting and the amount of attacks.

In this section, we show that DShield dataset contains
data from a large variety of contributors (in terms of
amount of contributions) and is a reasonable alternative
to experiment with our selective collaborative approach.
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