
Privacy-preserving Information
Sharing: Tools and Applications  

(Volume 1)

Emiliano De Cristofaro
University College London (UCL) 

https://emilianodc.com

FOSAD 2016

Prologue

Privacy-Enhancing Technologies (PETs):
Increase privacy of users, groups, and/or organizations

PETs often respond to privacy threats
Protect personally identifiable information
Support anonymous communications
Privacy-respecting data processing

Another angle: privacy as an enabler
Actively enabling scenarios otherwise impossible w/o
clear privacy guarantees

2

Sharing Information w/ Privacy

Needed when parties with limited mutual trust
willing or required to share information

Only the required minimum amount of information should be
disclosed in the process
Relaxing the tension between the benefits of collaboration/
compliance and associated risks

3

Secure Computation (2PC)

Alice (a) Bob (b)

f(a,b)

f(a,b)f(a,b)

4

Security in Secure Computation

Goldreich to the rescue!

Oded Goldreich. Foundations of cryptography: Basic
Applications, Ch. 7.2. Cambridge Univ Press, 2004.

Computational indinguishability from an execution in
the “ideal world”, involving a trusted third party (TTP)

5

Adversaries

Outside adversaries?
Not considered! Standard network security takes care of that

Honest but curious
Honest: follows protocol specifications, do not alter inputs
Curious: attempt to infer other party’s input

Malicious
Arbitrary deviations from the protocol

6

Formalize/Prove Security (HbC)

The Ideal World/Real World Indistinguishability
Consider an ideal implementation where TTP receives inputs
of both parties and outputs the result of the defined function
In the real implementation (without a TTP), each party does
not learn more information than in the ideal one
à Computational indistinguishability of views

With malicious adversaries, it is a bit more
complicated (“simulation”) > later

7

How to Implement 2PC?

1. Garbled Circuits
Sender prepares a “garbled” circuit and sends it to the
receiver, who obliviously evaluates the circuit, learning the
encodings corresponding to both his and the senders output 

2. Special-Purpose Protocols
Implement one specific function (and only that)
Usually based on public-key crypto properties 
[Have you ever heard of homomorphic encryption?]

8

Privacy-Preserving Information
Sharing with 2PC?

Alice (a) Bob (b)

f(a,b)

f(a,b)f(a,b)

Map information sharing to f(·,·)?

Realize secure f(·,·) efficiently?

Quantify information disclosure from output of f(·,·)?
9

Private Set Intersection (PSI)

Server Client

S = {s1,, sw} C = {c1,,cv}

Private  
Set Intersection

S∩C
10

Private Set Intersection?

DHS (Terrorist Watch List) and Airline (Passenger List)
Find out whether any suspect is on a given flight 

IRS (Tax Evaders) and Swiss Bank (Customers)
Discover if tax evaders have accounts at foreign banks 

Hoag Hospital (Patients) and SSA (Social Security DB)
Patients with fake Social Security Number

11

Straightforward PSI

For each item s, the Server sends SHA-256(s)

For each item c, the Client computes SHA-256(c)
Learn the intersection by matching SHA-256’s outputs

What’s the problem with this?

12

Background: Pseudorandom Functions

A deterministic function:

Efficient to compute  

Outputs of the function “look” random

x→ f → fk (x)
↑

k

13

Oblivious PRF

fk (x)
OPRF

k x

fk (x)

14

OPRF-based PSI

Server Client

fk (x)
OPRF

k ci
S = {s1,, sw} C = {c1,,cv}

fk (ci)

Ti = fk (ci)

Tj' = fk (sj) Tj' = fk (sj)
Unless sj is in the intersection
Tj’ looks random to the client15

OPRF from Blind-RSA Signatures

RSA Signatures:

 

PRF: fd (x) = H (sigd (x))

e ⋅d ≡1mod(p−1)(q−1)(N = p ⋅q, e), d
Sigd (x) = H (x)

dmodN,
Ver(Sig(x), x) =1⇔ Sig(x)e = H (x)modN

Server (d) Client (x)

(H one way function)

a = H (x) ⋅ re r ∈ ZN

(= H (x)d red)

sigd (x) = b / rb = ad

fd (x) = H (sigd (x))
16

PSI “Flavors”

Honest-but-Curious (HbC) or Malicious Security?
HbC adversaries follow protocol specifications but try to
violate privacy of other parties (passive)
Malicious adversaries can arbitrarily deviate (active)

Cardinality only? Data Transfer?

17

PSI w/ Data Transfer (PSI-DT)
Server Client

C = {c1,,cv}

PSI-DT

{ }),(),...,,(11 ww datasdatasS =

S∩C = (sj,dataj) ∃ci ∈C : ci = sj{ }
18

PSI w/ Data Transfer

Client Server

19

See: De Cristofaro, Lu, Tsudik, Efficient Techniques for Privacy-preserving
Sharing of Sensitive Information, TRUST 2011

How can we build PSI-DT?

20

A closer look at PSI
Server Client

S = {s1,, sw} C = {c1,,cv}

Private  
Set Intersection

S∩C

What if the client
populates C with its best
guesses for S?

Client needs to prove that inputs satisfy
a policy or be authorized

Authorizations issued by appropriate authority
Authorizations need to be verified implicitly

21

Authorized Private Set Intersection (APSI)

Server Client

S = {s1,, sw} C = {(c1,auth(c1)),, (cv,auth(cv))}

Authorized Private  
Set Intersection

S∩C =
def

sj ∈ S ∃ci ∈C : ci = sj ∧auth(ci) is valid{ }
Court

22

OPRF w/ Implicit Signature Verification

Server Client

fk (x)
OPRF with ISV

k sig(x)

fk (x) if Ver(sig(x), x) =1

$ otherwise
23

A simple OPRF-like with ISV

Court issues authorizations:  

OPRF: 

fk (x) = F(H (x)
2kmodN)

Sig(x) = H (x)dmodN

Server (k) Client (H(x)d)

a = H (x)dgr r ∈ ZN

(b = H (x)2edk g2rek)

H (x)2k = b/g2erkb = a2⋅e⋅k;gk

fk (x) = F(H (x)2k)(Implicit Verification)

24

OPRF with ISV – Malicious Security

OPRF: fk (x) = F(H (x)2k)

Server (k) Client (H(x)d)

a = H (x)dgr r ∈ ZN

(b = H (x)2edk g2rek)
H (x)2k = b/g2erkb = a2ek

fk (x) = F(H (x)2k)

α = H (x)(g')r

π = ZKPK{r : a2e /α 2 = (ge /g ')2r}

gk π ' = ZKPK{k :b = a2ek}

25

Authorized Private Set Intersection (APSI)

Server Client

S = {s1,, sw} C = {(c1,auth(c1)),, (cv,auth(cv))}

Authorized Private  
Set Intersection

S∩C =
def

sj ∈ S ∃ci ∈C : ci = sj ∧auth(ci) is valid{ }
Court

26

APSI: Preliminaries
Setup

Executed by the Court, on input sec. par. λ
(n,e,d) <- RSA.KeyGen(1λ) on safe primes
Pick g, g’ generators of QRn

Select H1 : {0,1}*--> Zn (full-domain hash)
Select H2 : {0,1}*--> {0,1}λ 

Public parameters
n, e, g, g’, H1(), H2() 

Authorize
On item ci , CA releases σi = H(ci)d mod n  

Notation
Client has v items, (c1, …, cv) and ci denotes i-th generic element
Server has w items, (s1, …, sw) and sj denotes j-th generic element
hsj=H(sj) hci=H(ci) σi = (hci)

d

27

APSI with linear complexity

{Mi ,Ni}

bi,b’i←{0,1}

SERVER  
(s1, …, sw)

CLIENT 
((c1,σ1),…,(cv,σv))

computation mod n

Rs ← Ζ N/2

Ks:j = (hsj)2Rs

Z, { M’i}, {Ts:j}

Rc:i ← Ζ N/2

Common Input: n, e, g, g’, H1(), H2()

KC:i = M’i · Z-Rc:i

Tc:i = H2(Kc:i , hci, ci)

Mi = (-1)bi·σi·gRc:i

Ni = (-1)b’i·hci·g’Rc:iM’i = (Mi)2eRs

Ts:j = H2(Ks:j , hsj , sj)

Z = g2eRs

 ZKPc = ZK { Rc:i | Mi
2e/Ni

2) = (ge/g’)2Rc:i}

 ZKPs = ZK { Rs | Z = (g)2eRs, M’i=(Mi)2eRs }
Client gets intersection C∩S:

ci in C∩S if and only if 

Tc:i in {Tc:1,…,Tc:v}∩{Ts:1,…,Ts:w}

28

If hsj = (σi)e then KS:j = (hsj)2Rs = Kc:i : 
Kc:i = M’i · Z-Rc:i = Mi

2eRs·g-Rc:i2eRs = 
= Mi

2eRs·g-Rc:i2eRs = σi
2eRs·g2eRsRc:i·g-2eRsRc:i =  

= (hci)2Rs = (hsj)2Rs = KS:j

Complexity

Input size:
Client’s set contains v items
Server’s set contains w items

Computational Complexity:
Client computes O(v) modular exponentiations
Server computes O(w+v) modular exponentiations
Exponentiations: 1024-bit mod 1024-bit

< 0.1ms on PC
~1ms on a smartphone

 Communication Complexity:
O(w+v)

29

Proofs in Malicious Model

Secure Computation of Authorized Set Intersection
Use the Real World/Ideal World paradigm
From a malicious client C*, construct an ideal world simulator SIMC

SIMC interacts with C* and extracts C* inputs
SIMC interacts with the ideal-world server through a TTP to get the
intersection
SIMC plays (with C*) the role of the server on input the intersection
C*’s views when interacting with the simulator or in the real-world
interaction are indistinguishable (show a reduction)

From a malicious server S*, construct an ideal world simulator SIMS
Similar idea but easier since the server has no output

30

w

Set Size in PSI

Server Client

S = {s1,, sw} C = {c1,,cv}

Private  
Set Intersection

S∩C

v

31

Why size matters?

DHS can’t disclose the size of the TWL
TWL is dynamic: revealing its size leaks sensitive information

Fluctuations in set size may be even more sensitive

Ideally, the server’s workload should be independent
by client’s input size

32

Feasibility of Size-Hiding

Run PSI with Random Padding?
Client chaffs up its set up to a fixed size
Upper bound would always be leaked
If client set is dynamic, the fixed size must reflect maximum
possible set size: waste of computation and communication

Secure Two-Party Computation?
Input sizes are reciprocally known
Some feasibility results Lindell &Orlandi, Chase&Visconti,
but require massive machinery (FHE, PCP) 33

SHI-PSI: The Building Blocks

RSA accumulator
[Baric-Pfitzmann’97] 
 

Unpredictable function 
Unpredictable if p,q are not known
Under the RSA assumption on safe moduli
Cannot invert in the exponent

g
xii∏ modN

fp,q (x, y) = x 1/y()modφ (N) modN

34

SHI-PSI Intuition

The server selects N=pq  
 

The client: (doesn’t know p,q)
Compute a global witness for its set,
An RSA accumulator on its (hashed) items
Hides client items (size too) 
 

The server: (knows p,q)
Compute
Apply a one-way function (a cryptographic hash)
The hash of an unpredictable function is a PRF (in ROM)

X

fp,q (X, sj) = X1/H (sj)

35

SHI-PSI: The Protocol
Client

Input: 
Server

Input: 
 p,q 

Common Input: N=pq , g , H() , F()

PCHi =
def

hcll≠i∏ ∀i()
PCH =

def
hcii=1

v
∏

RS ∈r 0,…, p 'q '−1{ }

∀j :Ks: j = XRS ⋅ 1/hsj()

∀j :Ts: j = F Ks: j()gRS , Ts:1,…,Ts:w{ }
∀i :Kc:i = gRS()

RCPCHi

∀i :Tc:i = F Kc:i()

OUTPUT:
Tc:1,…,Tc:v{ }∩ Ts:1,…,Ts:w{ }

X = gPCH()
Rc
modN

C = c1,…,ci,…cv{ } S = s1,…, sj,…, sw{ }

Correctness:
∀ci ∈ S∩C, ∃ j s. t. ci = sj ⇒ hci = hsj
Kc:i = gRSRC ⋅PCHi = XRS 1/hsj() = Ks: j

⇒ Tc:i = Ts: j

RC ∈r 1,…,N 2{ }

(modN)

(modN)

36

SHI-PSI: ComplexityClient
Input: 

Server
Input: 
 p,q 

∀i :PCHi = hcll≠i∏
PCH = hcii=1

v
∏

RS ∈r 0,…, p 'q '−1{ }

∀j :Ks: j = XRS ⋅ 1/hsj()

∀j :Ts: j = F Ks: j()

gRS , Ts:1,…,Ts:w{ }
∀i :Kc:i = gRS()

RCPCHi

∀i :Tc:i = F Kc:i()

X = gPCH()
Rc
modN

C = c1,…,ci,…cv{ } S = s1,…, sj,…, sw{ }

RC ∈r 1,…,N 2{ }

λ=length of H() outputs
v=|C| w=|S|

v (λ)-bit exps

w |N|-bit exps

v*(v-1) 
(λ)-bit exps

O(vlog(v)) 
λ-bit exps

Tree-based Optimization

1 |N|-bit exps

37

SHI-PSI: Security

Assumptions
Random Oracle Model (ROM)
Honest-but-Curious (HbC) adversaries
RSA assumption on safe moduli  

Client Privacy: Indistinguishability
For every PPT S* that plays the role of the server, for every input set S, and for
any client input set (C(0), C(1)), two views of S* corresponding to client’s inputs:
C(0) and C(1) are computationally indistinguishable. (Not even if |C(0)|≠|C(1)|). 

Server Privacy: Comparison to Ideal Model
Let ViewClient(C,S), be a random variable representing Client’s view during
execution of SHI-PSI with inputs (C,S). There exists a PPT algorithm C* s.t.:

C*(C,S∩C){ }(C,S) ≡ ViewClient (C,S){ }(C,S) 38

Special-purpose PSI

[DT10]: scales efficiently to very large sets
First protocol with linear complexities and fast crypto

[DKT10]: extends to arbitrarily malicious adversaries
Works also for Authorized Private Set Intersection

[DJLLT11]: PSI-based database querying
Won IARPA APP challenge, basis for IARPA SPAR

[DT12]: optimized toolkit for PSI
Privately intersect sets – 2,000 items/sec

[ADT11]: size-hiding PSI
39

Other Building Blocks

[DGT12]: Private Set Intersection Cardinality-only

[BDG12]: Private Sample Set Similarity

[DFT13]: Private and Size-Hiding Substring/Pattern  
Matching

[DJL11]: Private Database Querying

40

