

Privacy and Machine Learning: It's Complicated

Emiliano De Cristofaro https://emilianodc.com

Most privacy attacks in ML focus on inferring either:

Most privacy attacks in ML focus on inferring either:

1. Inclusion of a data point in the training set (aka "membership inference")

Most privacy attacks in ML focus on inferring either:

- 1. Inclusion of a data point in the training set (aka "membership inference")
- 2. What class representatives (in training set) look like (aka "model inversion")

Adversary wants to test whether data of a target victim has been used to train a model

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

E.g., main task is: predict whether a smoker gets cancer

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive E.g., main task is: predict whether a smoker gets cancer [Shokri et al., S&P'17] show it for discriminative models

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

E.g., main task is: predict whether a smoker gets cancer

[Shokri et al., S&P'17] show it for discriminative models

[Hayes et al. PETS'19] for generative models (later in the talk)

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

E.g., main task is: predict whether a smoker gets cancer

[Shokri et al., S&P'17] show it for discriminative models

[Hayes et al. PETS'19] for generative models (later in the talk)

Membership inference is a very active research area, not only in machine learning...

Membership inference is a very active research area, not only in machine learning...

Membership inference is a very active research area, not only in machine learning...

Given f(data), infer if $x \in data$ (e.g., f is aggregation)

Membership inference is a very active research area, not only in machine learning...

```
Given f(data), infer if x \in data (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data
```

Membership inference is a very active research area, not only in machine learning...

```
Given f(data), infer if x \in data (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data
```

Well-understood problem (besides leakage)

Membership inference is a very active research area, not only in machine learning...

```
Given f(data), infer if x \in data (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data
```

Well-understood problem (besides leakage)

Use it to establish wrongdoing

Or to assess protection, e.g., with differentially private noise

Prior work focused on properties of an entire class, e.g.:

Prior work focused on properties of an entire class, e.g.: Model Inversion [Fredrikson et al. CCS'15]

Prior work focused on properties of an entire class, e.g.:

Model Inversion [Fredrikson et al. CCS'15]

GAN attacks [Hitaji et al. CCS'17]

Prior work focused on properties of an entire class, e.g.:

Model Inversion [Fredrikson et al. CCS'15]

GAN attacks [Hitaji et al. CCS'17]

E.g.: given a gender classifier, infer what a male looks like

Prior work focused on properties of an entire class, e.g.:

Model Inversion [Fredrikson et al. CCS'15]

GAN attacks [Hitaji et al. CCS'17]

E.g.: given a gender classifier, infer what a male looks like

But...shouldn't useful machine learning models reveal something about population from which training data was sampled

```
Prior work focused on properties of an entire class, e.g.:

Model Inversion [Fredrikson et al. CCS'15]

GAN attacks [Hitaji et al. CCS'17]
```

E.g.: given a gender classifier, infer what a male looks like

But...shouldn't useful machine learning models reveal something about population from which training data was sampled

Privacy leakage !=

Adv learns something about training data

Prior work focused on properties of an entire class, e.g.:

Model Inversion [Fredrikson et al. CCS'15]

GAN attacks [Hitaji et al. CCS'17]

E.g.: given a gender classifier, infer what a male looks like

But...shouldn't useful machine learning models reveal something about population from which training data was sampled

Privacy leakage !=

Adv learns something about training data

...but not of the whole class?

...but not of the whole class?

...but not of the whole class?

In a nutshell: given a gender classifier, infer race of people in Bob's photos

...but not of the whole class?

...but not of the whole class?

...but not of the whole class?

In a nutshell: given a gender classifier, infer race of people in Bob's photos

...but not of the whole class?

In a nutshell: given a gender classifier, infer race of people in Bob's photos

Let's call this a
Property Inference Attack

1. Membership Inference against Generative Models

1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

3. Privacy-Preserving Generative Networks

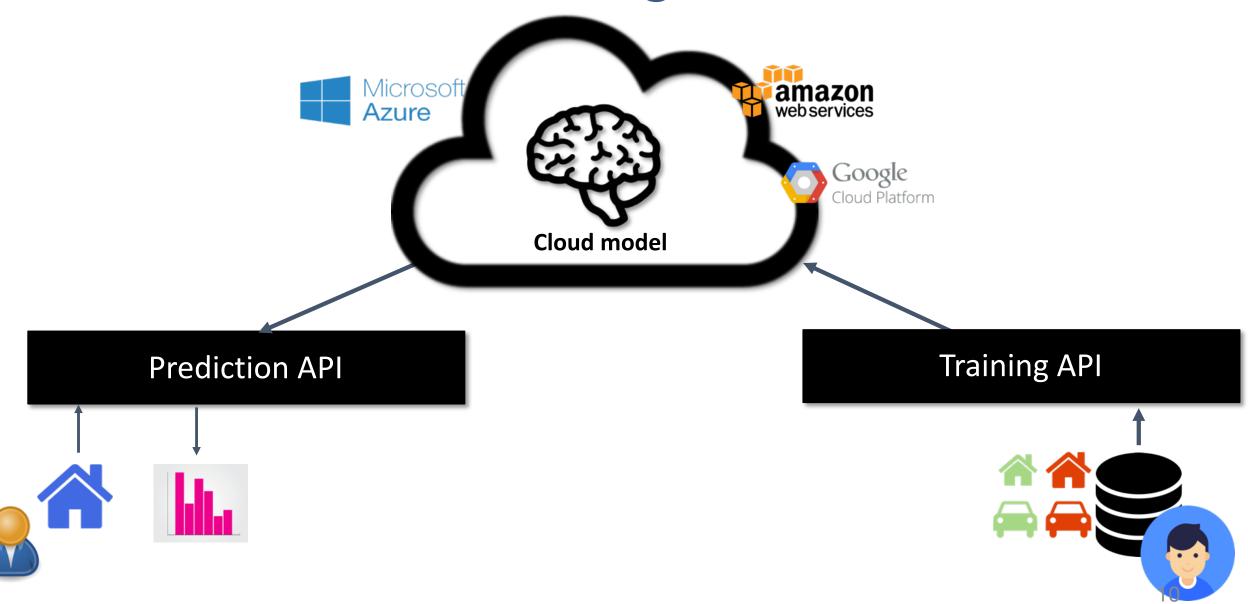
SOME GOOD NEWS!

1. Membership Inference against Generative Models

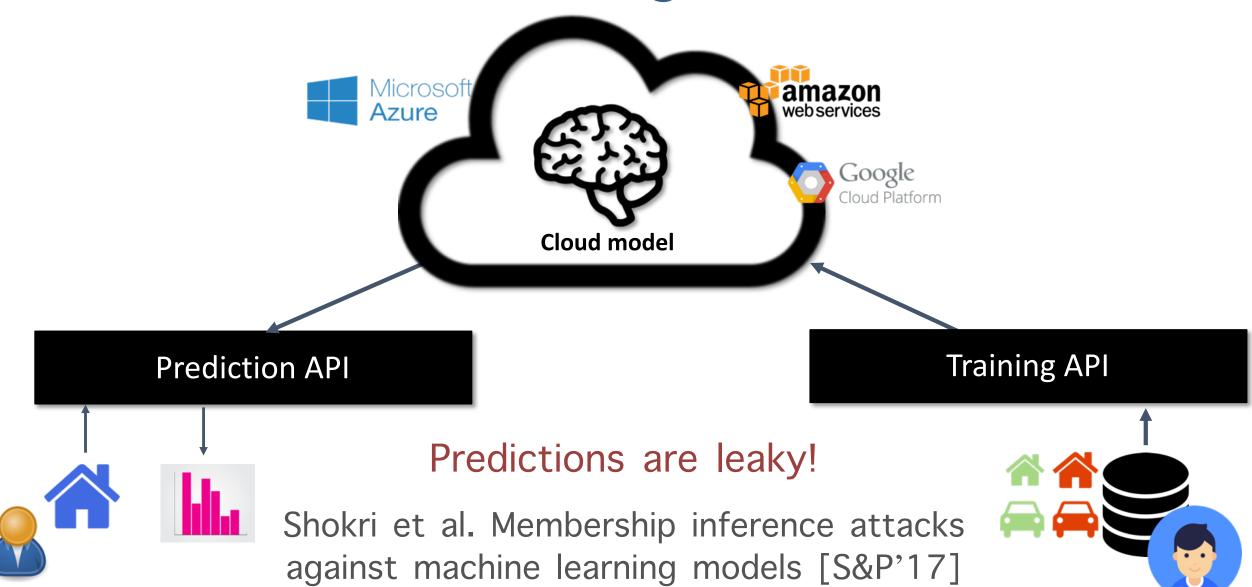
2. Property Inference in Collaborative/Federated ML

Machine Learning as a Service

Machine Learning as a Service

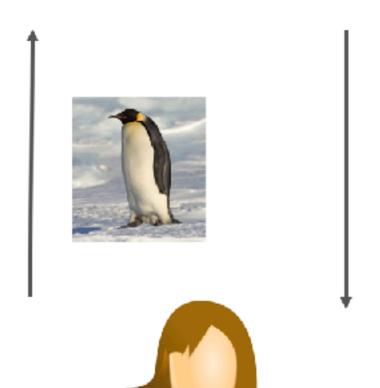


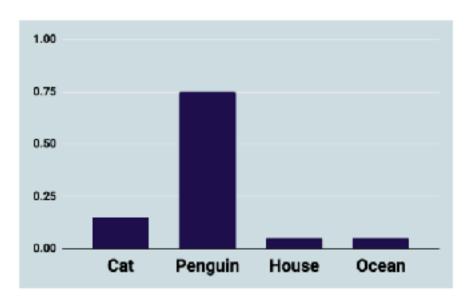
Machine Learning as a Service

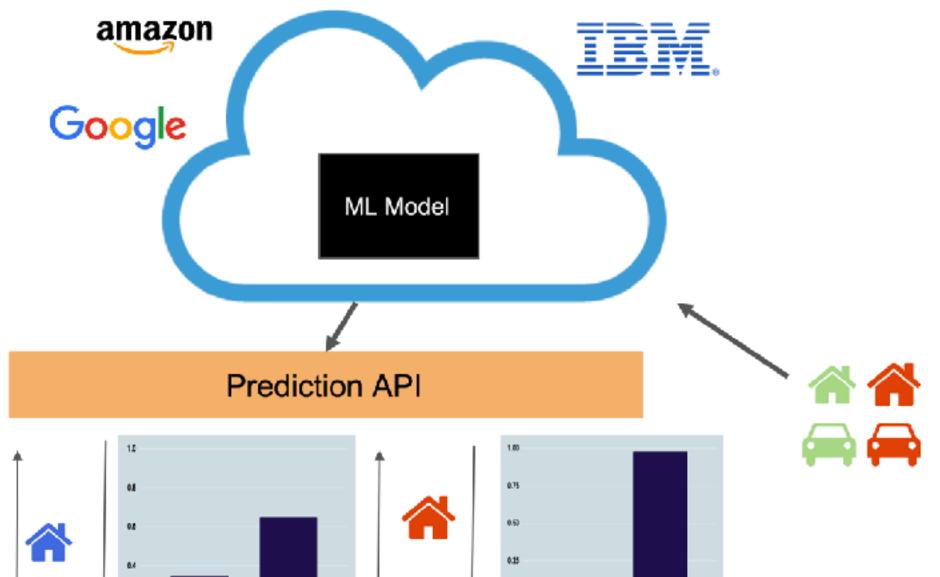


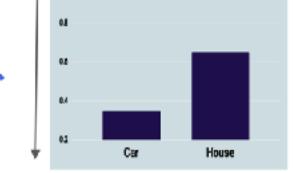
Membership Inference/Discriminative

Prediction API



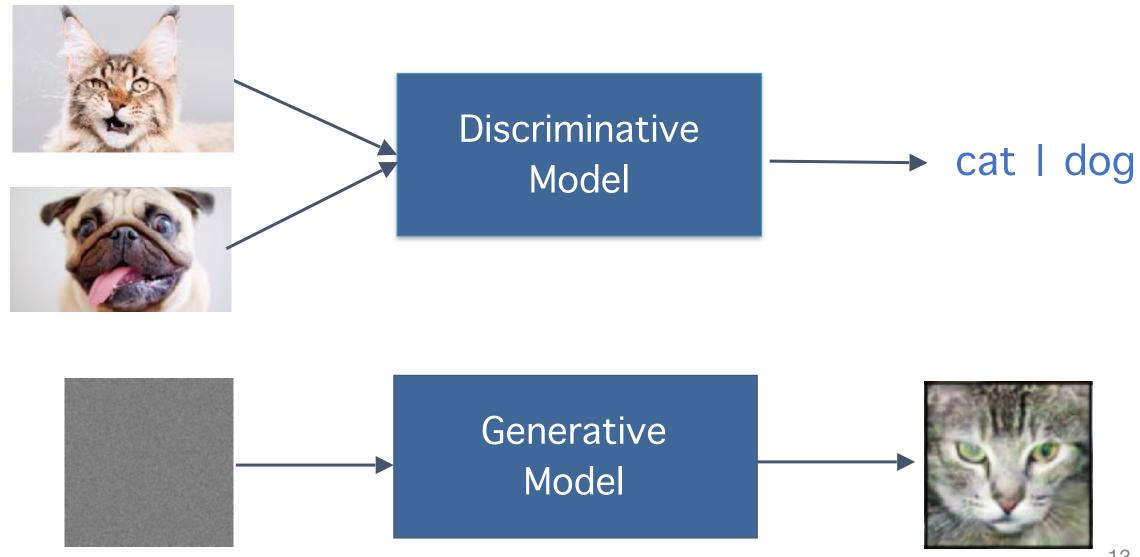






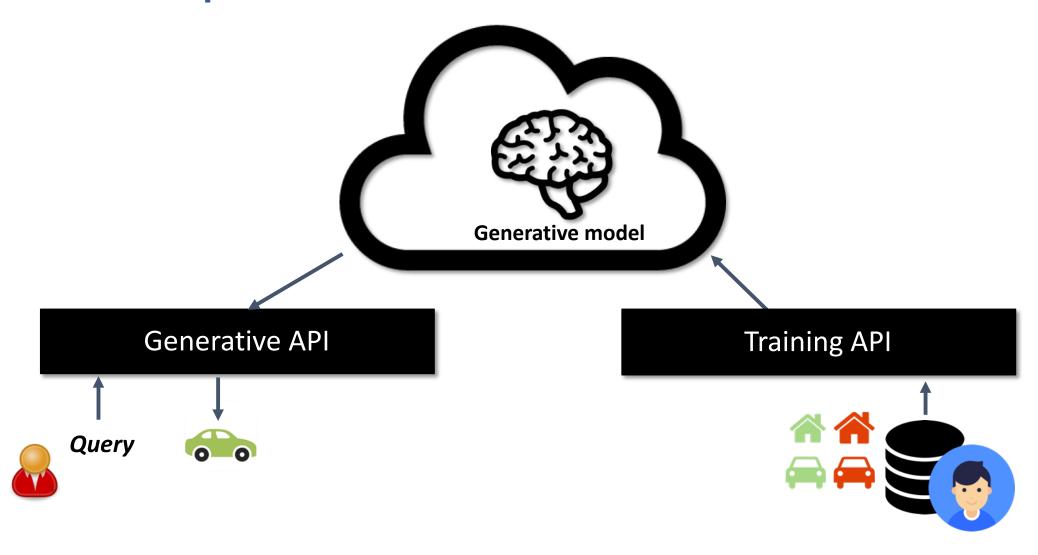
What About Generative Models?

What About Generative Models?

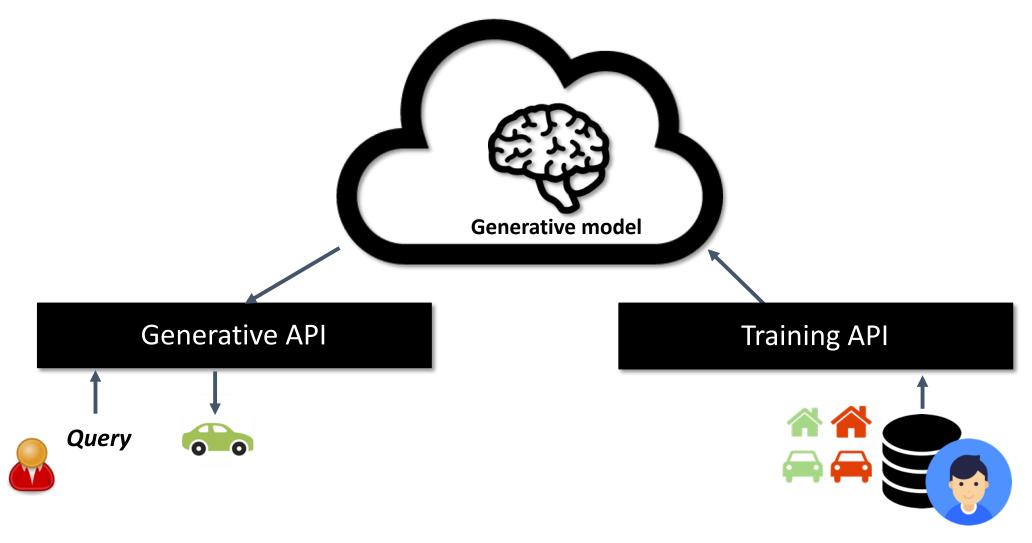


Membership Inference in Generative Models

Membership Inference in Generative Models



Membership Inference in Generative Models



Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership Inference Attacks Against Generative Models [PETS 2019]

Inference without predictions?

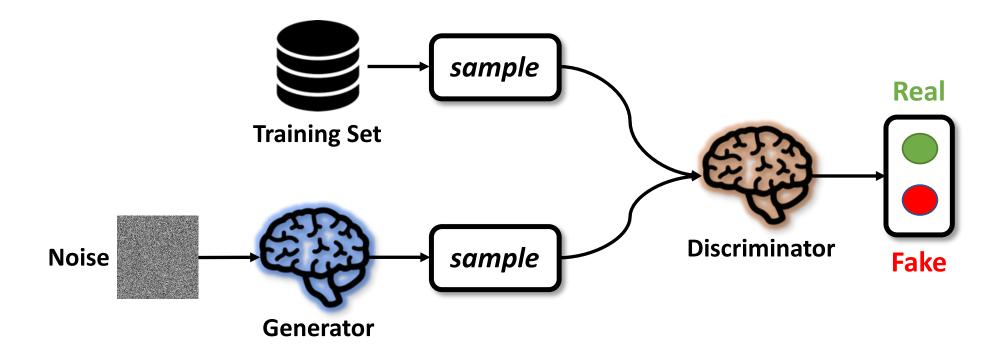
Use generative models!

Train GANs to learn the distribution and a prediction model at the same time

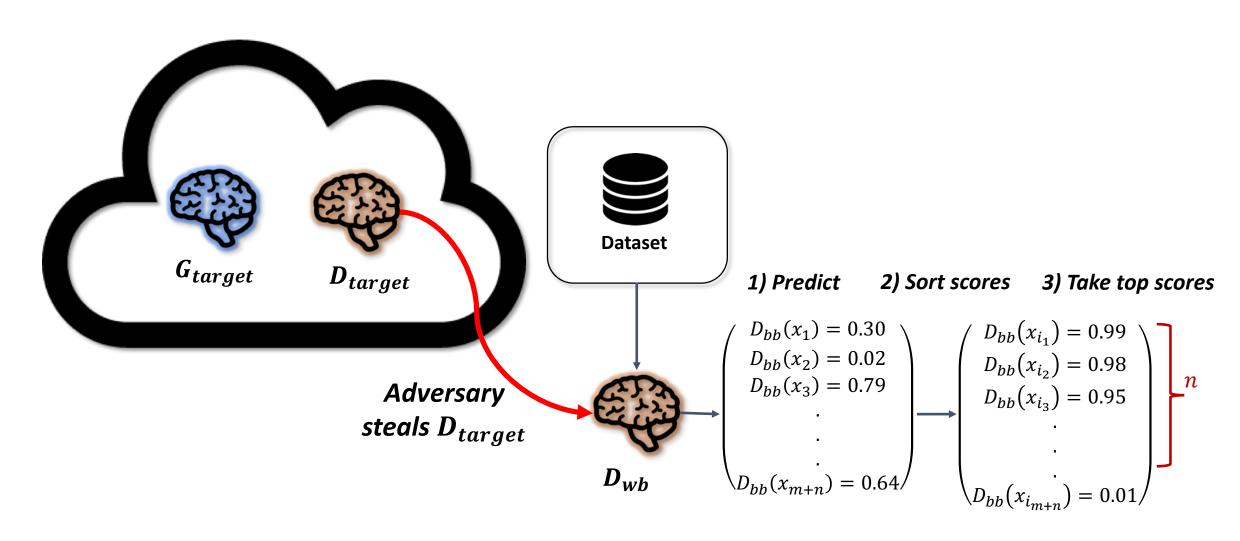
Inference without predictions?

Use generative models!

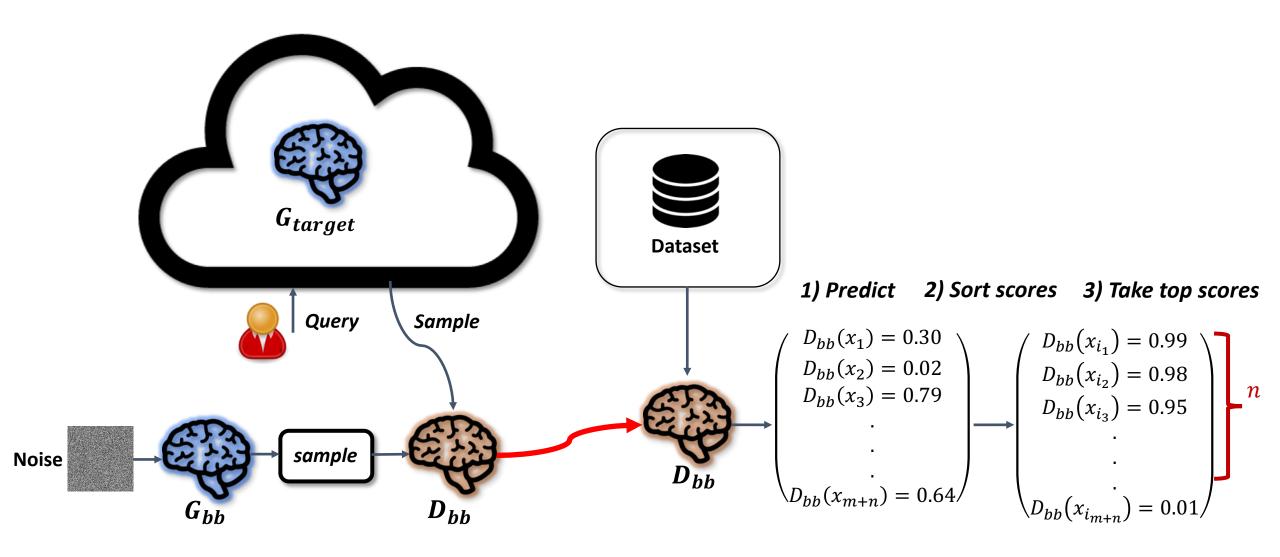
Train GANs to learn the distribution and a prediction model at the same time



White-Box Attack



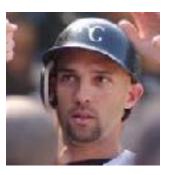
Black-Box Attack



Datasets

Models

LFW

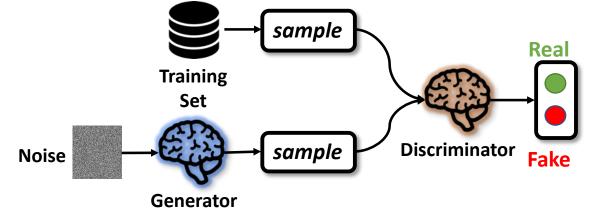


CIFAR-10

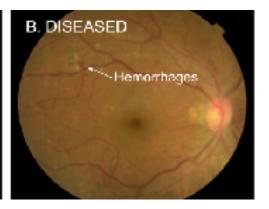
bird

cat

deer



A. HEALTHY



Attacker Model:

DCGAN

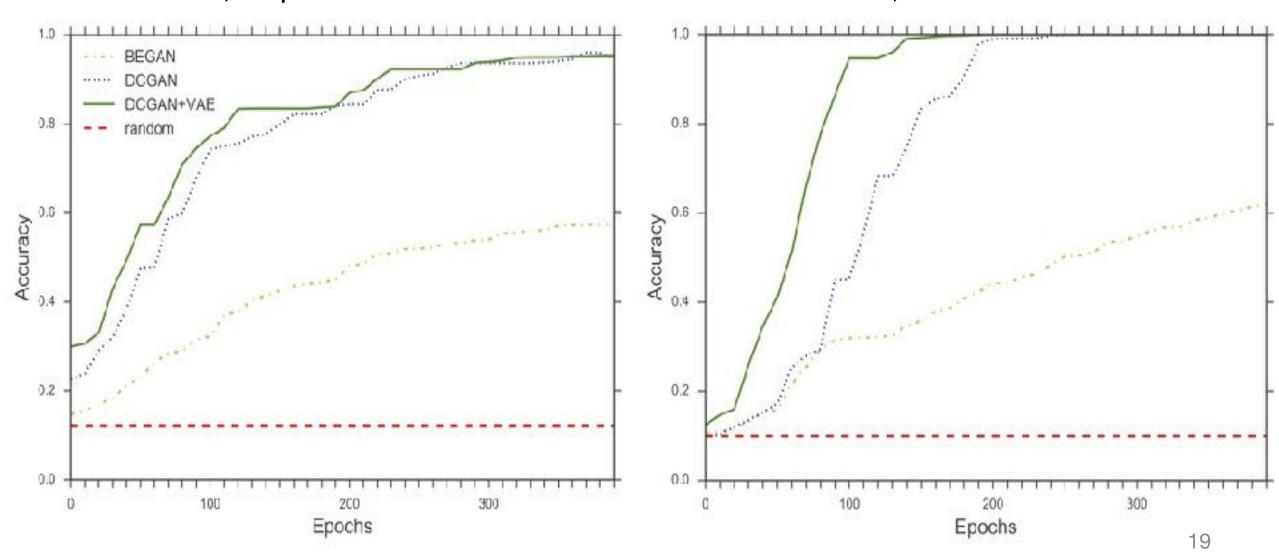
Target Model:

DCGAN, DCGAN+VAE, BEGAN

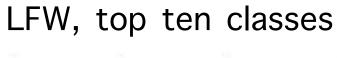
White-Box Results

LFW, top ten classes

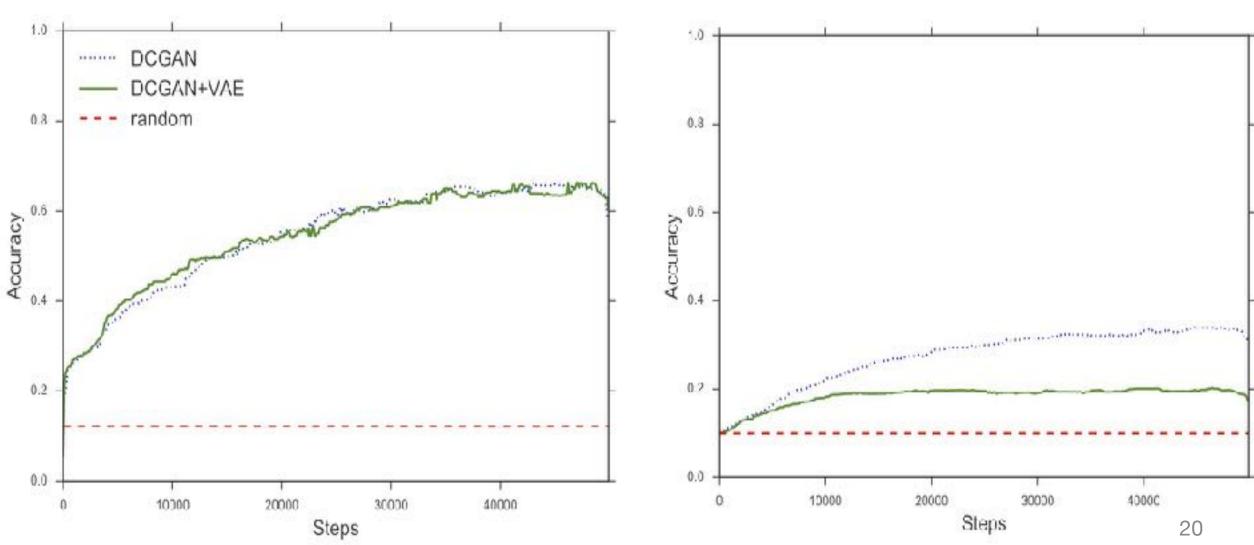
CIFAR-10, random 10% subset



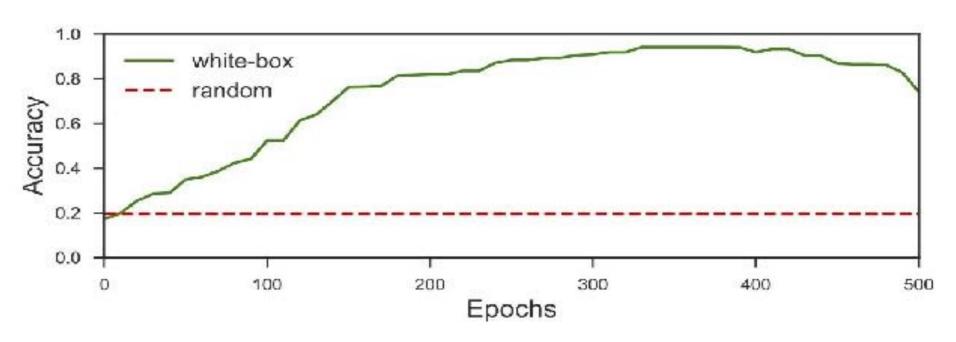
Black-Box Results



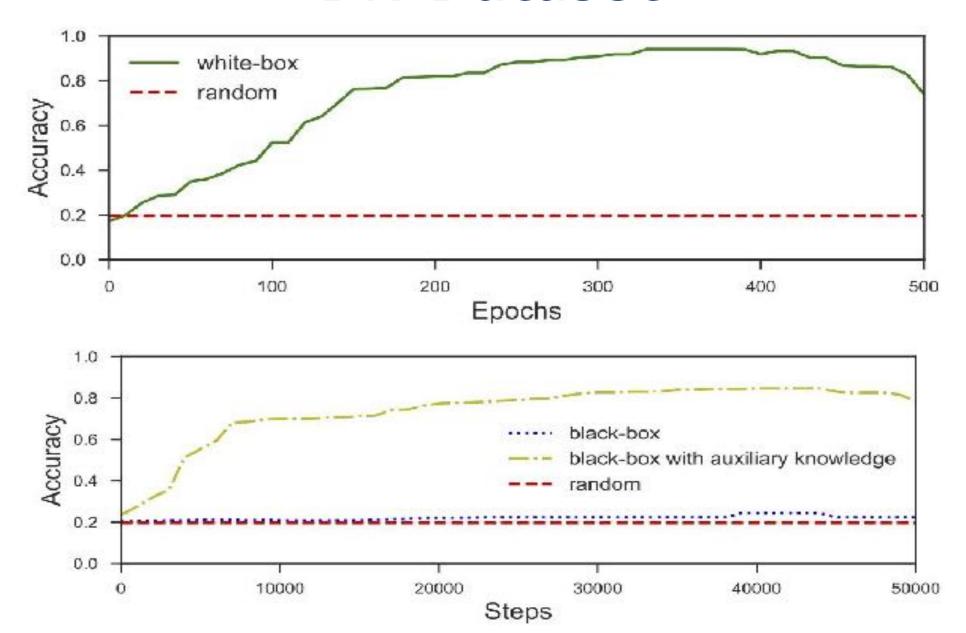
CIFAR-10, random 10% subset

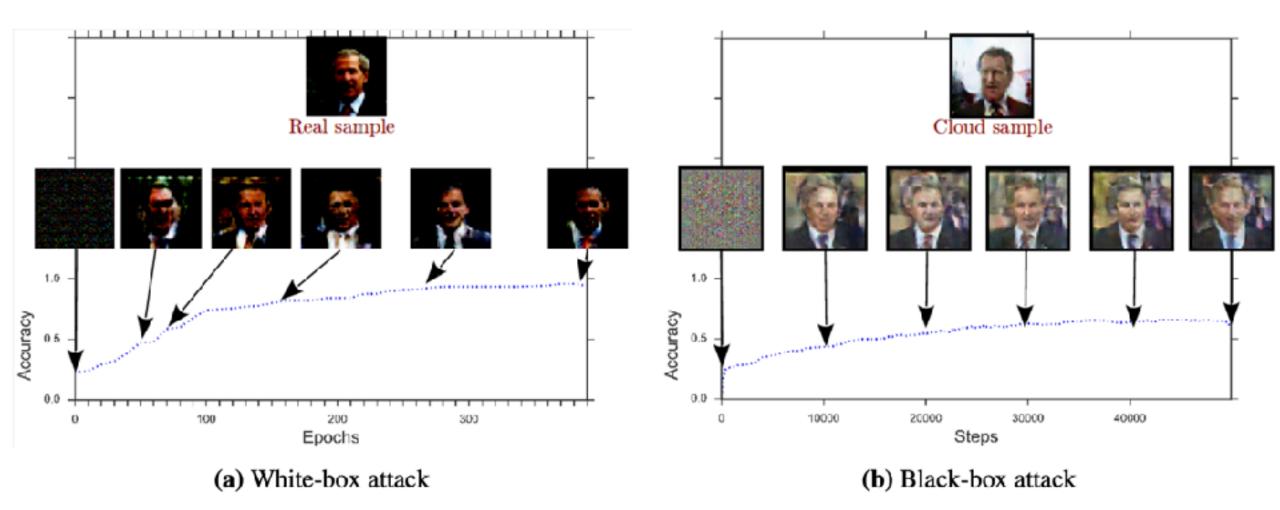


DR Dataset



DR Dataset





1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

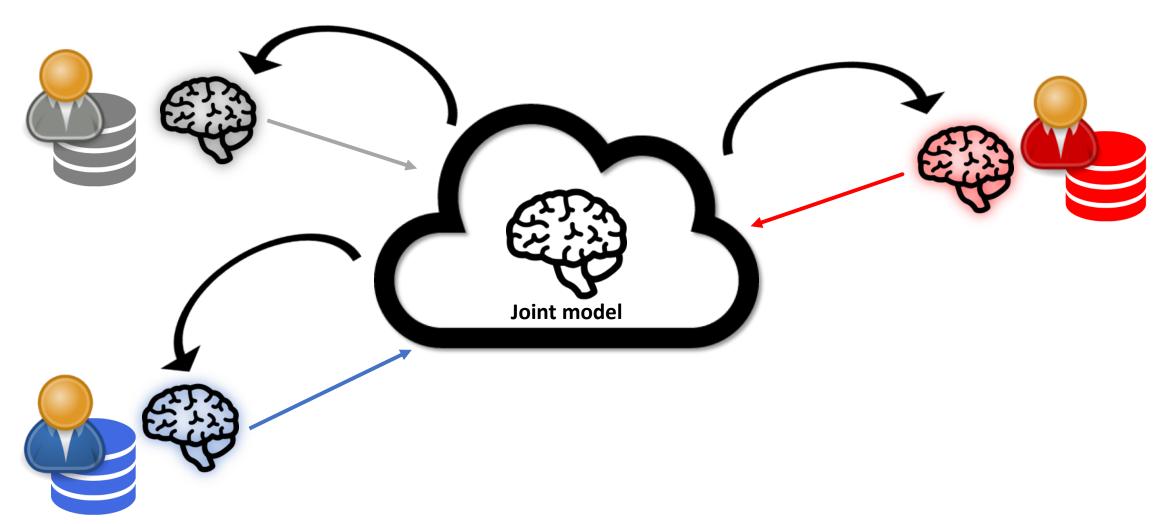
1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

Collaborative/Federated Learning



Collaborative

Federated

Algorithm 1 Parameter server with synchronized SGD

Server executes:

```
Initialize \theta_0

for t=1 to T do

for each client k do

g_t^k \leftarrow \text{ClientUpdate}(\theta_{t-1})

end for

\theta_t \leftarrow \theta_{t-1} - \eta \sum_k g_t^k

end for
```

ClientUpdate(θ):

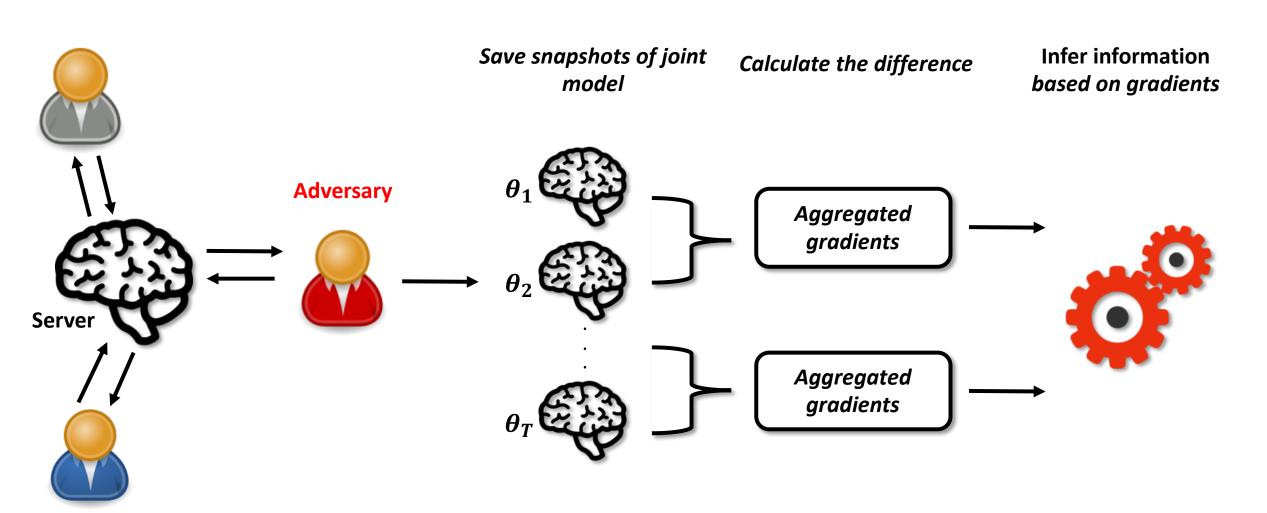
Select batch b from client's data **return** local gradients $\nabla L(b; \theta)$

Algorithm 2 Federated learning with model averaging

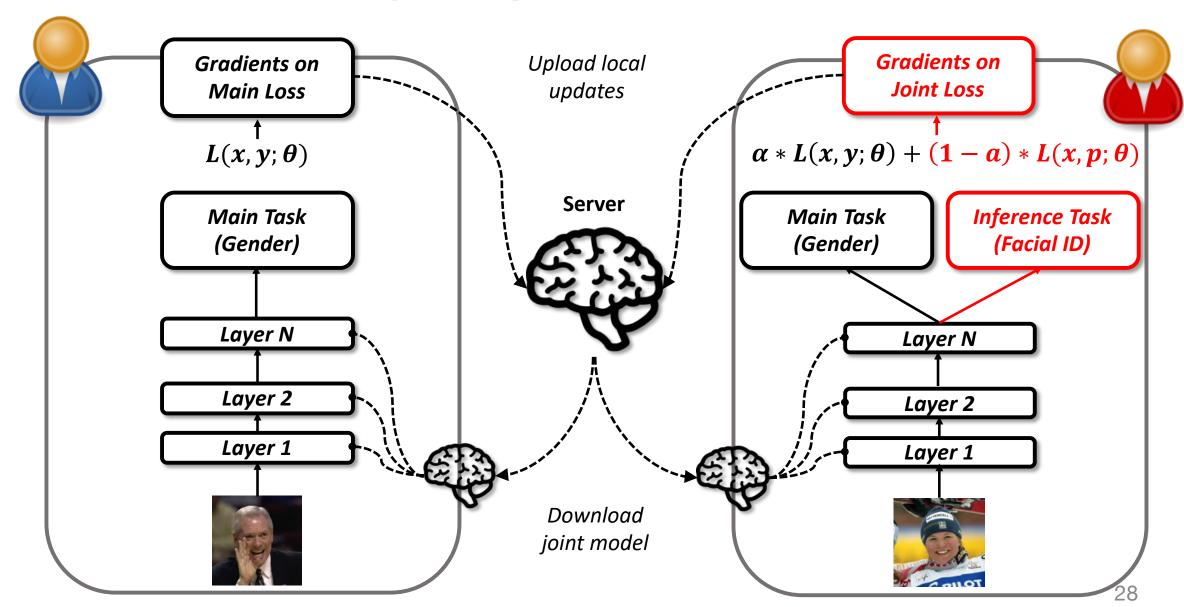
```
Server executes:
     Initialize \theta_0
     m \leftarrow max(C \cdot K, 1)
     for t = 1 to T do
          S_t \leftarrow \text{(random set of m clients)}
          for each client k \in S_t do
                \theta_t^k \leftarrow \text{ClientUpdate}(\theta_{t-1})
          end for
          \theta_t \leftarrow \sum_k \frac{n^k}{n} \theta_t^k
     end for
ClientUpdate(\theta):
     for each local iteration do
          for each batch b in client's split do
                \theta \leftarrow \theta - \eta \nabla L(b; \theta)
          end for
     end for
```

return local model θ

Passive Property Inference Attack



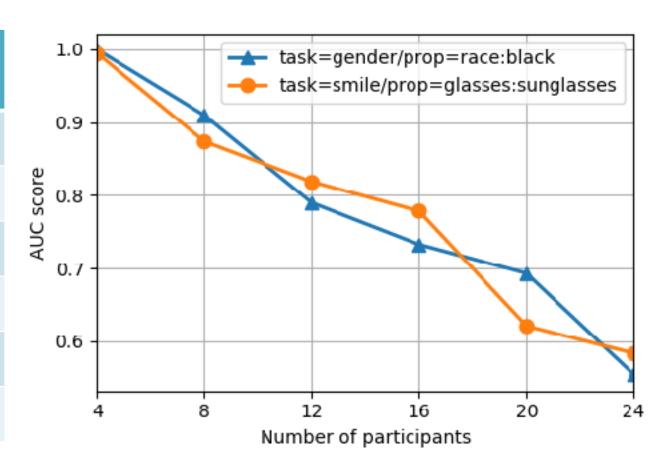
Active Property Inference Attack



Dataset	Туре	Main Task	Inference Task
LFW	Images	Gender/Smile/Age Eyewear/Race/Hair	Race/Eyewear
FaceScrub	Images	Gender	Identity
PIPA	Images	Age	Gender
FourSquare	Locations	Gender	Membership
Yelp-health	Text	Review Score	Membership Doctor specialty
Yelp-author	Text	Review Score	Author
CSI	Text	Sentiment	Membership Region/Gender/Veracity

Property Inference on LFW

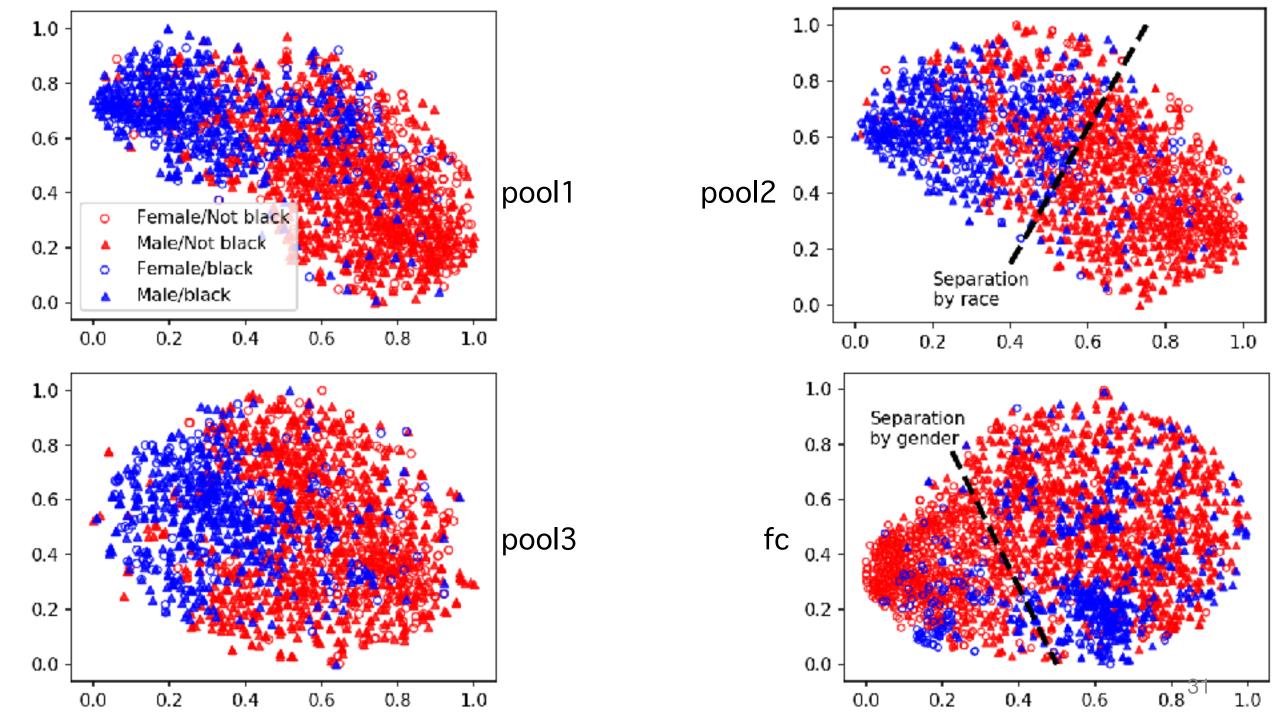
Main Task	Inference Task	Correlation	AUC score
Gender	Sunglasses	-0.025	1.0
Smile	Asian	0.047	0.93
Age	Black	-0.084	1.0
Race	Sunglasses	0.026	1.0
Eyewear	Asian	-0.119	0.91
Hair	Sunglasses	-0.013	1.0



Two-Party

Multi-Party

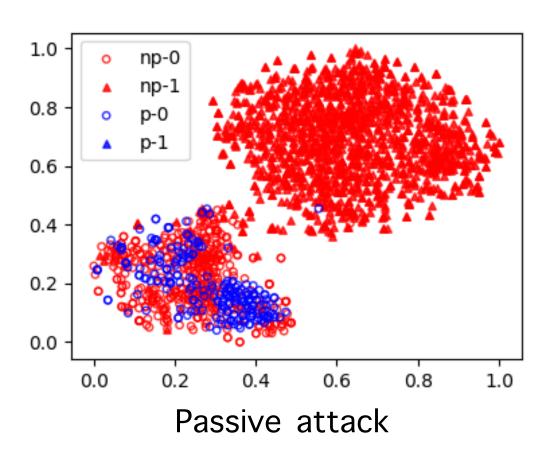
Feature t-SNE projection

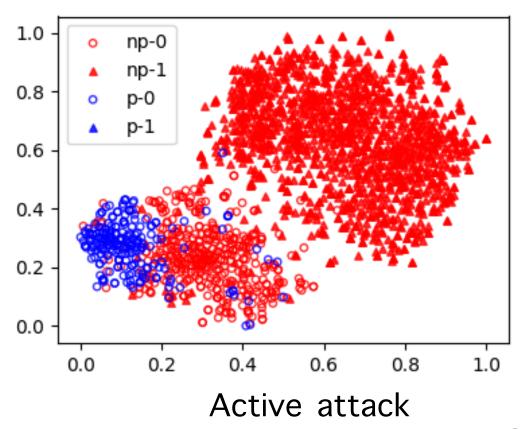


Passive vs Active Attack on FaceScrub

Main Task: **△**/**●**= female/male

Inference Task: Blue points with the property (identity)

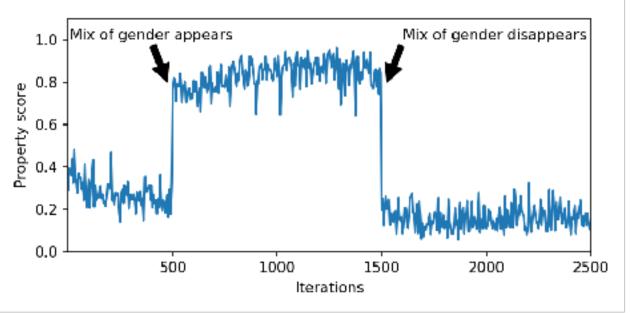




Inferring when a property occurs

Inferring when a property occurs

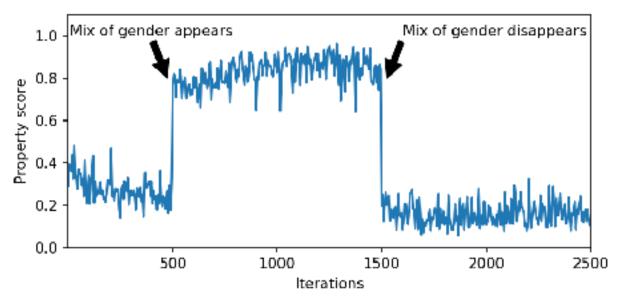
Batches with the property appear



Main task: Age / Two-party
Inference task: people in the image are
of the same gender (PIPA)

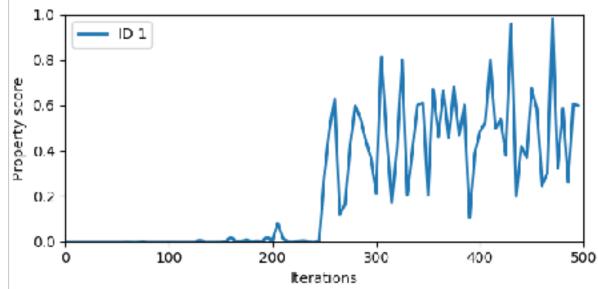
Inferring when a property occurs

Batches with the property appear



Main task: Age / Two-party
Inference task: people in the image are
of the same gender (PIPA)

Participant with ID 1 joins training



Main task: Gender / Multi-Party
Inference task: author identification

Defenses?

Defenses?

Selective gradient sharing

Dataset: Text reviews

Main Task: Sentiment classifier

Doesn't really work...

Property / % parameters shared	10%	50%	100%
Top region	0.84	0.86	0.93
Gender	0.90	0.91	0.93
Veracity	0.94	0.99	0.99

Defenses?

Selective gradient sharing

Dataset: Text reviews

Main Task: Sentiment classifier

Doesn't really work...

Property / % parameters shared	10%	50%	100%
Top region	0.84	0.86	0.93
Gender	0.90	0.91	0.93
Veracity	0.94	0.99	0.99

Participant-level differential privacy

Hide participant's contributions

Only two mechanisms in the literature

Fail to converge for "few" participants

Agenda

1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

3. Privacy-Preserving Generative Networks

Agenda

1. Membership Inference against Generative Models

2. Property Inference in Collaborative/Federated ML

3. Privacy-Preserving Generative Networks

Let X be the "data universe"

Let DCX be the "dataset"

Let X be the "data universe"

Let DCX be the "dataset"

Definition: An Algorithm M is (ε, δ) -differentially private if for all pairs of neighboring datasets (D,D'), and for all outputs x:

$$Pr[M(D)=x] \le exp(\epsilon) * Pr[M(D') = x] + \delta$$

Let X be the "data universe"

Let DCX be the "dataset"

Definition: An Algorithm M is (ε, δ) -differentially private if for all pairs of neighboring datasets (D,D'), and for all outputs x:

$$Pr[M(D)=x] \le exp(\epsilon) * Pr[M(D') = x] + \delta$$

quantifies information leakage

Let X be the "data universe"

Let DCX be the "dataset"

Definition: An Algorithm M is (ε, δ) -differentially private if for all pairs of neighboring datasets (D,D'), and for all outputs x:

$$Pr[M(D)=x] \le exp(\epsilon) * Pr[M(D') = x] + \delta$$

quantifies information leakage

allows for a small probability of failure

Theorem (Post-Processing):

If M(D) is ε -private, for any function f, then f(M(D)) is ε -private

```
Theorem (Post-Processing):
```

If M(D) is ε -private, for any function f, then f(M(D)) is ε -private

Theorem (Composition):

If $M_1, ..., M_k$ are ϵ -private, then $M(D)=M(M_1(D), ..., M_k(D))$ is $(k*\epsilon)$ -private

```
Theorem (Post-Processing):
```

If M(D) is ϵ -private, for any function f, then f(M(D)) is ϵ -private

Theorem (Composition):

If $M_1, ..., M_k$ are ϵ -private, then $M(D)=M(M_1(D), ..., M_k(D))$ is $(k*\epsilon)$ -private

We can apply algorithms as we normally would; access the data using differentially private subroutines, and keep track of privacy budget (Modularity)

Organizations need/want to publish their datasets without compromising users' privacy

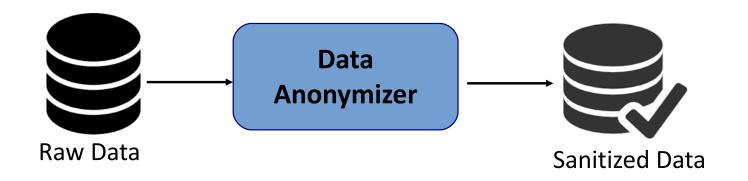
Organizations need/want to publish their datasets without compromising users' privacy

Organizations need/want to publish their datasets without compromising users' privacy

Differential Privacy: Weak utility, "curse of dimensionality" (*)

^(*) Brickell & Shmatikov, The cost of privacy: destruction of data-mining utility in anonymized data publishing. In KDD 2008.

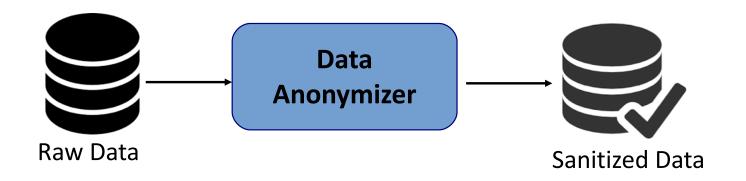
Organizations need/want to publish their datasets without compromising users' privacy



Differential Privacy: Weak utility, "curse of dimensionality" (*) k-Anonymity: no real privacy

(*) Brickell & Shmatikov, The cost of privacy: destruction of data-mining utility in anonymized data publishing. In KDD 2008.

Organizations need/want to publish their datasets without compromising users' privacy



Differential Privacy: Weak utility, "curse of dimensionality" k-Anonymity: no real privacy

(*) Brickell & Shmatikov, The cost of privacy: destruction of data-mining utility in anonymized data publishing. In KDD 2008.

How about generating synthetic dataset?

How about generating synthetic dataset?

Gergely Acs, Luca Melis, Claude Castelluccia, Emiliano De Cristofaro. Differentially Private Mixture of Generative Neural Networks. In IEEE ICDM'17. (Extended version in IEEE TKDE) 40

Main Idea

Main Idea

Model the data-generating distribution by training a generative model on the original data

Publish the model along with its differentially private parameters

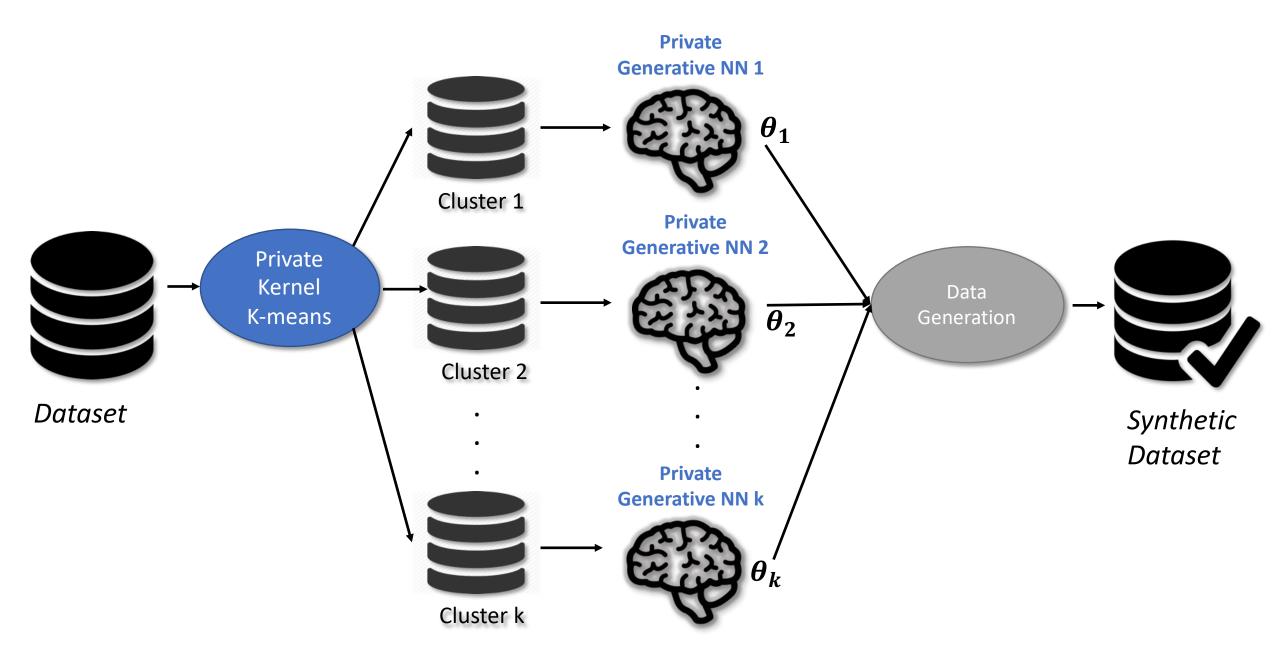
Main Idea

Model the data-generating distribution by training a generative model on the original data

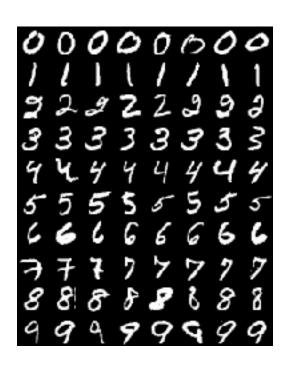
Publish the model along with its differentially private parameters

Anybody can generate a synthetic dataset resembling the original (training) data

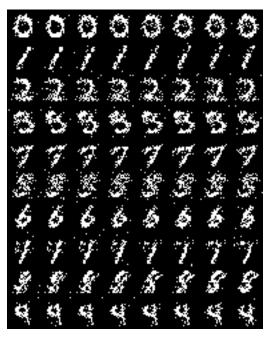
With strong (differential) privacy protection



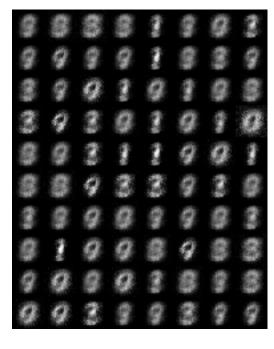
Synthetic Samples (MNIST)



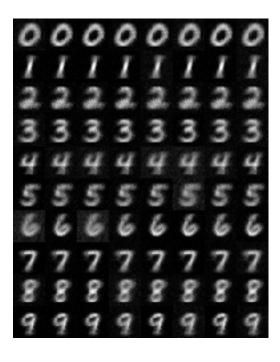
Original samples



RBM samples



VAE w/o clustering



VAE with clustering

20 SGD epochs (epsilon=1.74)

Thank you!

