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Membership Inference (cnt’d)

Given f(data), infer if x ∈ data (e.g., f is aggregation)
[HSR+08, WLW+09] for genomic data
[Pyrgelis et al., NDSS’18] for mobility data

Membership inference is a very active research area, not 
only in machine learning… 
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Well-understood problem (besides leakage)
Use it to establish wrongdoing
Or to assess protection, e.g., with differentially private noise
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Let’s call this a 
Property Inference Attack
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3. Privacy-Preserving Generative Networks

SOME GOOD 
NEWS!
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Machine Learning as a Service

Predictions are leaky! 
Shokri et al. Membership inference attacks 
against machine learning models [S&P’17]

Prediction API Training API

Cloud model
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Membership Inference in Generative Models

Generative API Training API

Generative model

Query

Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership 
Inference Attacks Against Generative Models [PETS 2019] 14
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Inference without predictions?

Use generative models! 
Train GANs to learn the distribution and a prediction model at the 
same time

sample

sample

Real

FakeDiscriminatorNoise

Training Set

Generator 15



White-Box Attack
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Black-Box Attack

Noise
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Datasets

LFW

CIFAR-10

DR

Models

Attacker Model:  
    DCGAN 
Target Model:  
    DCGAN, DCGAN+VAE, BEGAN 

sample

sample

Real

FakeDiscriminatorNoise

Training 
Set

Generator
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White-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset
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Black-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset
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DR Dataset
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Luca Melis, Congzheng Song, Emiliano De Cristofaro, Vitaly Shmatikov. Exploiting Unintended 
Feature Leakage in Collaborative Learning. IEEE Symposium on Security & Privacy (S&P’19)

3. Privacy-Preserving Generative Networks



Collaborative/Federated Learning

Joint model
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Collaborative
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Passive Property Inference Attack
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Active Property Inference Attack

Main Task 
(Gender)

Main Task
(Gender)

Inference Task
(Facial ID)

Gradients on 
Main Loss

Gradients on 
Joint Loss

Server
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Upload local 
updates
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Dataset Type Main Task Inference Task

LFW Images Gender/Smile/Age 
Eyewear/Race/Hair

Race/Eyewear

FaceScrub Images Gender Identity
PIPA Images Age Gender
FourSquare Locations Gender Membership
Yelp-health Text Review Score Membership 

Doctor specialty

Yelp-author Text Review Score Author
CSI Text Sentiment Membership 

Region/Gender/Veracity
29



Property Inference on LFW
Main Task Inference 

Task
Correlation AUC 

score
Gender Sunglasses -0.025 1.0

Smile Asian 0.047 0.93

Age Black -0.084 1.0

Race Sunglasses 0.026 1.0

Eyewear Asian -0.119 0.91

Hair Sunglasses -0.013 1.0

Two-Party Multi-Party
30



Feature t-SNE projection
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pool1 pool2

pool3 fc

31



Passive vs Active Attack on FaceScrub
Main Task: ▲/●= female/male  
Inference Task: Blue points with the property (identity)

Passive attack Active attack
32
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Inferring when a property occurs

Main task: Age / Two-party 
Inference task: people in the image are 
of the same gender (PIPA)

Batches with the property appear

33



Inferring when a property occurs

Main task: Age / Two-party 
Inference task: people in the image are 
of the same gender (PIPA)

Batches with the property appear

Main task: Gender / Multi-Party 
Inference task: author identification

Participant with ID 1 joins training
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Selective gradient sharing 
Dataset: Text reviews 
Main Task: Sentiment classifier 
Doesn’t really work…

Property / % parameters 
shared

10% 50% 100% 

Top region 0.84 0.86 0.93
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Veracity 0.94 0.99 0.99
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Defenses?
Selective gradient sharing 
Dataset: Text reviews 
Main Task: Sentiment classifier 
Doesn’t really work…

Participant-level differential privacy 
Hide participant’s contributions 
Only two mechanisms in the literature 
Fail to converge for “few” participants

Property / % parameters 
shared

10% 50% 100% 

Top region 0.84 0.86 0.93

Gender 0.90 0.91 0.93

Veracity 0.94 0.99 0.99
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3. Privacy-Preserving Generative 
    Networks

2. Property Inference in Collaborative/Federated ML
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Differential Privacy (Weaker Notion)

Let X be the “data universe” 
Let D⊂X be the “dataset”

Definition: An Algorithm M is (ε,𝛿)-differentially private if for all 
pairs of neighboring datasets (D,D’), and for all outputs x: 

    Pr[M(D)=x] ≤ exp(ε) * Pr[M(D’) = x] + 𝛿

quantifies information  
leakage

allows for a small 
probability of failure
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Some Useful Properties

Theorem (Post-Processing):
  If M(D) is ε-private, for any function f, then f(M(D)) is ε-private

Theorem (Composition):
  If M1,…,Mk are ε-private, then M(D)=M(M1(D),…,Mk(D)) is (k*ε)-private

We can apply algorithms as we normally would; access the data 
using differentially private subroutines, and keep track of privacy 
budget (Modularity)
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How about generating  
synthetic dataset?

Gergely Acs, Luca Melis, Claude Castelluccia, Emiliano De Cristofaro. Differentially Private 
Mixture of Generative Neural Networks. In IEEE ICDM’17. (Extended version in IEEE TKDE) 40
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Main Idea

Model the data-generating distribution by training a generative 
model on the original data 
Publish the model along with its differentially private parameters 

Anybody can generate a synthetic dataset resembling the original 
(training) data 
With strong (differential) privacy protection
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Private
Kernel 

K-means
Data 

Generation

Cluster 1

Cluster 2

Cluster k

.
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. 
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Synthetic
Dataset
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Dataset

Private 
Generative NN 1

Private 
Generative NN 2

Private 
Generative NN k
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Synthetic Samples (MNIST)

Original samples RBM samples VAE w/o clustering VAE with clustering

20 SGD epochs (epsilon=1.74)
43



Thank you!
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