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Membership Inference (cnt’d)

Given f(data), infer if x ∈ data (e.g., f is aggregation)
[Homer et al., Science’13] for genomic data
[Pyrgelis et al., NDSS’18] for mobility data

Membership inference is a very active research area, not 
only in machine learning… 
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Well-understood problem, besides the more obvious leakage
Establish wrongdoing
Assess protection, e.g., from differentially private defenses
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Intuition

How about if we inferred properties of a subset of the 
training inputs…

    …but not of the whole class?

In a nutshell: given a gender classifier, infer race of 
people in Bob’s photos
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Luca Melis, Congzheng Song, Emiliano De Cristofaro, Vitaly Shmatikov. Exploiting Unintended 
Feature Leakage in Collaborative Learning. IEEE Symposium on Security & Privacy (S&P’19)



Deep Learning

�9

! =

# ! = $ #%&'(% =	 0.9
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• Map input ! to layers of hidden 
representations ℎ, then to output #

• ℎ$%& = ((*$ ⋅ ℎ$) with parameter *$

• Train model to minimizes loss:
* = 	argmin45(6 ! , #)

• Gradient descent on parameters:
• Each iteration train on a batch
• Update * based on gradient of 5



Collaborative/Federated Learning

Joint model
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Collaborative
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Passive Property Inference Attack

Server

Adversary !"
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Save snapshots of joint 
model

Infer information 
based on gradients

Aggregated 
gradients

Aggregated 
gradients

Calculate the difference
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Active Property Inference Attack

Main Task 
(Gender)

Main Task
(Gender)

Inference Task
(Facial ID)

Gradients on 
Main Loss

Gradients on 
Joint Loss

Server

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

!(#, %; ') ) ∗ ! #, %; ' + , − . ∗ !(#, /; ')

Upload local 
updates

Download
joint model
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Dataset Type Main Task Inference Task

LFW Images Gender/Smile/Age 
Eyewear/Race/Hair

Race/Eyewear

FaceScrub Images Gender Identity
PIPA Images Age Gender
FourSquare Locations Gender Membership

Yelp-health Text Review Score Membership 
Doctor specialty

Yelp-author Text Review Score Author
CSI Text Sentiment Membership 

Region/Gender/Veracity
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Property Inference on LFW
Main Task Inference 

Task
Correlation AUC 

score
Gender Sunglasses -0.025 1.0

Smile Asian 0.047 0.93

Age Black -0.084 1.0

Race Sunglasses 0.026 1.0

Eyewear Asian -0.119 0.91

Hair Sunglasses -0.013 1.0

Two-Party Multi-Party
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Feature t-SNE projection
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pool1 pool2

pool3 fc
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Passive vs Active Attack on FaceScrub
Main Task: ▲/●= female/male  
Inference Task: Blue points with the property (identity)

Passive attack Active attack
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Inferring when a property occurs

Main task: Age / Two-party 
Inference task: people in the image are 
of the same gender (PIPA)

Batches with the property appear

Main task: Gender / Multi-Party 
Inference task: author identification

Participant with ID 1 joins training
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Defenses?
Selective gradient sharing 
Dataset: Text reviews 
Main Task: Sentiment classifier 
Doesn’t really work…

Property / % parameters 
shared

10% 50% 100% 

Top region 0.84 0.86 0.93
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Veracity 0.94 0.99 0.99
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Defenses?
Selective gradient sharing 
Dataset: Text reviews 
Main Task: Sentiment classifier 
Doesn’t really work…

Participant-level differential privacy 
Hide participant’s contributions 
Only two mechanisms in the literature 
Fail to converge for “few” participants

Property / % parameters 
shared

10% 50% 100% 

Top region 0.84 0.86 0.93

Gender 0.90 0.91 0.93

Veracity 0.94 0.99 0.99
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Machine Learning as a Service

Predictions are leaky! 
Shokri et al. Membership inference attacks 
against machine learning models. S&P’17

Prediction API Training API

Cloud model
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Membership Inference in Generative Models

Generative API Training API

Generative model

Query

Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership 
Inference Attacks Against Generative Models. PETS 2019.
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same time



Inference without predictions?

Use generative models! 
Train GANs to learn the distribution and a prediction model at the 
same time

sample

sample

Real

FakeDiscriminatorNoise

Training Set

Generator



White-Box Attack
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Black-Box Attack

Noise
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Datasets

LFW

CIFAR-10

DR

Models

Attacker Model:  
    DCGAN 
Target Model:  
    DCGAN, DCGAN+VAE, BEGAN 

sample

sample

Real

FakeDiscriminatorNoise

Training 
Set

Generator



White-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset



Black-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset



DR Dataset



DR Dataset



Defense? Differentially Private GAN*

White-box, LFW, top ten classes 
 

*Triastcyn et al. “Generating differentially private datasets using GANs.” arXiv 1803.03148
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